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ABSTRACT

This thesis develops a low-resolution stochastic simulation model to assess the
impact of the intelligence, surveillance and reconnaissance components of C*ISR, and
strike capabilities on the mission success of a United States carrier battle group (CVBG).
The simulation uses a stochastic approach to model a two-day conflict between a CVBG
and a land-based enemy which incorporates the randomness and uncertainty inherent in
anxfare. The simulation is implemented as a C++ computer program to develop a tool to
analytically exercise a prospective new system in order to predict its possible effect on
combat operations. Experiments were run which simulated a two-day battle in which the
United States CVBG sensor availability, sensor accuracy, and weapons availability were
varied to study their affect on the outcome of the battle. Statistical analysis techniques are
used to quantitatively measure the results of the battle as the sensor and weapon

parameters change.




DISCLAIMER
The views expressed in this thesjs are those of the author and do not reflect the
official policy or position of the Department of Defense or the United States Government.
The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made, within
the time available, to ensure that the programs are free of computational and logic errors,
they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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EXECUTIVE SUMMARY

A. PURPOSE

The purpose of this thesis is to develop a low-resolution stochastic simulation
approach to model a naval theater conflict against a land-based enemy which incorporates
the aspects of the randomness and uncertainty inherent in warfare. The simulation is
designed to assess the impact of intelligence, reconnaissance, and surveillance information,
derived from internal and external sources, and strike capabilities (weapons types,
numbers, and characteristics), specifically and illustratively on the mission successA of a
United States carrier battle group (CVBG) that is tasked to provide support for a

multinational force operating in a hostile region.

B. BACKGROUND

Command, control, communications, computer systems, intelligence, surveillance,
and reconnaissance (C*ISR) and superior strike capability are two keys to the future
success of United States carrier battle group operations. A CVBG is frequently tasked to
exert the policy of the United States in remote areas of the world against powerful military
nations. The leaders that make the decisions on the type of C*ISR and weapons assets to
develop and procure need tools to analytically exercise a érospective new system in ;)rder
* to predict its possible effect on combat operations.
The proposed modeling approach examines a realistic naval engagement in which a

group of multinational force ships is initially in the Persian Gulf and wishes to transit out of the




area through the Straits of Hormuz. The transit is opposed by Iranian land-based surface-to-
surface missile launchers and air forces. The United States government dispatches a CVBG
to protect the multinational force as it transits the straits by destroying Iranian mobile
surface-to-surface missile launchers and defeating Iranian fighter, attack aircraft, and

reconnaissance aircraft.

C. RESULTS

A stochastic simulation model to assess the impact of information and strike
capabilities for this situation has been programmed in the C++ computer language. Initial
force structures, sensor, and weapons capabilities were established using general
unclassified military publications. Computer experiments were then performed which
simulated a two-day conflict between the United States naval carrier battle group and Iran.
The initial conditions of the computer runs were varied to affecf the sensor and weapons
availability, and sensor accuracy for the United States and multinational forces. Statistical
analysis techniques were used to examine the results of the computer simulation runs to
determine hbw the varied sensor and weapon capabilities affected the outcome of the

battle.

The analysis of the simulation results show that the use of an additional aircraft
carrier combined with the availability of satellite intelligence enables the U. S. carrier _
battle group to complete its mission. On the basis of this initial computer experiment, the
proposed simulation modeling approach shows promise of having informative predictive

capabilities, but more detail in the models is required.




L INTRODUCTION

A. BACKGROUND

Command, control, communications, computer systems, intelligence, surveillance, and reconnaissance
(C'ISR) is presently receiving a significant amount of attention in the Department of Defense. The United States
(U. S.) armed services are ooncerﬁed with acquiring nearly perfect knowledge of enemy units, movements, and
plans while denying the enemy the same information. C'ISR includes the assignment of the sensors used to
obtain data, communication links used to transmit and reccive data, the capabilities and priorities of the
machines and men that process raw data, and the bommander’s perception of the military situation on the basis
of the analyzed end product. The leaders that make decisions on the type of C*ISR assets to develop and procure
need tools to analytically exercise a prospective new system in order to predict its possible effect on combat
operations. Modeling and simﬂation tools are, and have potential to be used extensively by the Department of
Defense to influence these decisions. This thesis used a specific naval conflict to construct a stochastic
simulation model that incorporates some of the randomness and uncertainty inherent in warfare. The model is
programmed as a computer simulation in the C++ computer language. Simulation trials are run to explore the
effects of changing conditions that relate to C'ISR which are programmed into the model on the outcome of the
naval conflict.

The scenario that the model was designed for is a realistic naval scenario that may be of interest to U.
S. military planners. The scenario envisions a group of multinational force units that is in the Persian Gulf and
that wishes to transit out of the area through the Straits of Hormuz; its transit is opposed by Iranian land-based
surface-to-surface missile launchers and air forces. The multinational unit’s exit is assisted by a U. S. carrier
batﬂ; group (CVBG). The interplay of C*ISR and strike capabiﬁﬁes is judged by use of the exploratory
simulation model that is implemented in this thesis.
B. THESIS OBJECTIVE

The objective of this thesis is to develop a stochastic modeling approach that can assess the impact of

intelligence, reconnaissance, and surveillance information, derived from internal and external sources, and strike




capabilities (weapons types, numbers, and characteristics), on the mission success of a U. S. CVBG in the
scenario outlined above. Simulation is used to study the outcomes of the stochastic model.
C. APPROACH
This thesis deQelops Ia low-resolution closed-loop stochastic simulation model of a specific naval
scenario. The element of chance is incorporated into the model by assigning specific probabilities for the
occurrence of certain significant events (e.g. detection of a target, weapon hits on a target, operation of radar
systems, etc.). When the model is tasked to determine the outcome of a significant event, the outcome is
simulated using appropriate probabilities. The model design attempts to represent the impact of various types of
informational sensors (own unit and external), the battlefield perception drawn from the combined sensor
information, and the subsequent number of assets utilized and losses experienced while attempting to complete
an assigned mission. This modeling approach has been realized as a time-step simulation programmed in the
C++ computer language to produce quantitative results. The units that comprise the Iranian and United States
forces, and the sensor and weapons capabilities of each force were defined for this model to allow for quantitative
analysis of simulation runs. Analysis of the simulation results using a specific initial force structure and unit
characteristics has shown that this model does not contain sufficient detail to properly assess the affect of C‘ISR
This model presents an approach that has promise of appraising the affect qf CAISR on U. S. naval operations if

more detail is programmed into the computer simulation.




IL. SITUATION
A. GENERAL DESCRIPTION
The situation considered is that a ﬁmlﬁnaﬁonal force, oonmstmg of a few U. S. combatants escorting
merchant ships, is located in the Persian Gulf. Iran decides to prevent the force from moving through the Straits
of Hormuz, and threatens aircraft and surface-to-surface missile (SSM) attacks on the vessels. The prospect of a
complex war in this region precludes the U. S. from obtaining any friendly air or littoral support. The U. S.
sends a CVBG to protect the force whenever it chooses to transit through the straits to the Arabian Sea. The

situation is shown in Figure 1.

-JWT
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Figure 1. Conflict Region and Approximate Locations of Opposing Forces

The goal of the multinational force is to transit the straits into the Arabian Sea, but to do so while
experiencing minimal damage. The CVBG is tasked to protect the multinational force by destroying Iranian
SSM weapon sites around the Straits while minimizing losses of aircraft and damage to the battle group. The
goal of the Iranian forces is to prevent both the multinational force from completing its transit, and to maximize

damage to the U. S. naval forces assigned to protect the multinational force.




B. ORDER OF BATTLE

The multinational force consists of 1 DDG (Burke class with vertical launch system (VLS)), 1 DDG
(Spruance class with VLS), and 2 Merchants. The U.S. CVBG consists of 1 CVN (Nimitz) and an augmented
aircraft contingent which includes 46 F/A-18 strike aircraft, 30 F-14 fighter, 4 E-2C early warning aircraft, and
4 reconnaissance aircraft, 2 CGs (Ticonderoga class w/VLS), 3 DDGs (Spruance/Burke w/ VLS), and 1 AOR.
The mission of the U.S. carrier is to deter Iranian air strikes by destroying their attack aircraft, attacking their air
bases, destroying their SSM launchers, and eliminating their primary sensors (reconnaissance aircraft and long
range radar sites); the warships are tasked to provide defense for the aircraft carrier and strike land-based targets
using Tomahawk cruise missiles. The United States force can also have two satellites available for overhead
visual and electronic intelligence gathering.

The Iranian force consists of land-based attack, fighter, and reconnaissance aircraft squadrons, SSM,
and SAM sites. The Iranian’s pnmaxy sensors are land-based long range radar, and reconnaissance aircraft.
C. STUDIED SITUATION

The assumptions of the model for the scenario are as follows. In the computer implementation, an
external file is used to define the initial force structure for both sides. This external database defines each unit by
type, weapons systems (type, capacity, range), and movement patterns. The characteristics, tactics, and locations
of all units and Weapons incorporated in this model are derived from unclassified general publications and
information. The initial database is designed to force a two-day battle between United States and Iranian forces.

As the battle commences, the multinational force is Jocated in the southern Persian Gulf, transiting towards the

Straits of Hormuz, and the CVBG is transiting towards a rendezvous point southeast of the straits. The tracks
that ‘all ships will follow during the two-day battle are pre-determined, and only their rate of movement varies
around an average transit speed. The multinational force travels Athrough the Straits of Hormuz, joins the
CVBG, and transits towards the Arabian Sea. Both the CVBG and the multinational force follow tracks that
maintain them at the maximum range from Iran while remaining in sufficiently deep water. The Iranian forces
commence hostilities as soon as they detect any naval units, and the U. S. forces launch pre-emptive strikes when
they detect the Iranians. The battle concludes after 48 hours, and on the average the CVBG and the
multinational force (assuming the multinational force survived) have reached the entrance to the Arabian Sea.
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When the United States has satellite assets available, the satellites examine regions of the Iranian
countryside where it is suspected that operating air bases and mobile SSM launchers are located. These pre-
determined flight patterns result in possible detecﬁons. The satellite capability is represented by two sensors.
One of the sensors performs a three hour scan of a region of Iran where threat contacts are located and then takes
nine hours to orbit the earth before returning to conduct another scan of the same area. The other sensor
performs a 2.5 hour scan over a different area where threat contacts are‘ located and then takes six hours to orbit
the earth before returning to conduct another scan of the same area. All other sensors are located on moving or
stationary objects and the area where one of these sensors has the possibility of detecting an enemy unit depends
on both the location and range of a given sensor, which is defined for each sensor in the initial data base.

D. TACTICAL ASSUMPTIONS |

1. This scenario excludes any combat between naval units, other than between carrier aircraft and
land-based strike and reconnaissance aircraft.

2. Intelligence sources are restricted to the sensors in the simulation, and Human Intelligence
(HUMINT) is not built into the model.

3 The naval units attached to the CVBG or multinational task force move in formation. There is no
independent steaming of ships, and they proceed along pre-determined courses. The movement track of the
CVBG ensures that all units remain out of range of Iranian SSM launchers. The CVBG units therefore are only
susceptible to attacks by aircraft.

4. The naval units are considered to be independent entities for detection purposes. Therefore, the
detection of one unit does not reveal the location of another unit. In practice, identifying the location of one ship
of a naval task force implies that other ships are nearby, but this is ignored in this model.

5. The dissemination of information between friendly units is assumed to be perfect and effectively
instantaneous. This implies that information available to one unit is available with only a small negligible time
delay to all units, so a common intelligence picture can be formulated.

6. The Iranian forces utilize continuous radar coverage to detect an incoming U.S. strike. The United
States Navy operates using the Aegis radar system, which is resident on Ticonderoga class cruisers, as the
primary air defense asset protecting a carrier battle group. Use of the Aegis radar system exposes the location of
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the ship it is located on to the enemy electronic intelligence sensors. The U. S. beﬁeves that the benefits of using
this system outweigh exposing the location of naval assets to enemy electronic intelligence sensors (ELINT).

7. SAM sites are modeled as if they are collocated to an air base, SSM, or command and control
center and are represented as a close-in weapons system (defensive asset). They are assumed to only engage an
enemy unit that is attacking the facility that is collocated with the SAM site.

8. Once a missile launch occurs, it may only be defeated by deception, jamuming, or a close-in weapons
system. Aircraft are not given the capability to shoot missiles out of the sky.

9. Iranian supply depots that reload mobile SSM launchers with missiles are distributed throughout the
model of the Iranian country. They cannot be detected by sensor assets (i.e. are effectively undetectable), and
therefore are never targeted or destroyed. This assumption is not necessarily realistic, and can be changed in
future revisions.

10. The unit that has the least distance between itself and an enemy target, and that has a weapon

onboard that can attack the enemy, will fire at the target.

Note: Various of the restrictive assumptions made above can be altered in later revisions of the software.




L. MODEL

A. GEOGRAPHIC REPRESENTATION

The region is represented by a 700 X 400 mile map consisting of 20 X 20 mile grids (700 grids, 20
rows by 35 columns). The 20 mile grids maintain a ship within the same grid for at least 30 minutes during a
transit (the typical transit speed of a merchant is 15 knots, and a naval warship is 20 knots). Each grid is
numbered sequentially as shown in Figure 2. A grid contains information identifying the grid boundaries, the
type of grid (land or water), the general weather condition over the grid, separate lists of United States and
Iranian units that are located on the grid, and separate lists of the Iranian units that the U. S. forces have detected

within the grid, and U. S. units that the Iranian forces have detected.

1 S 34 35
36 L 69 70
666 | 667 |....iiiiiiiiiiiiiiiiieiiiiaae. 699 | 700

Figure 2. Geographic grid and numbering system
The database to build this region is located in Appendix A and is displayed graphically in Figure 3. Each list of
units that are located on the grid ide;mify individual units by a unit number and Cartesian location, ie. they
specify the currgnt ground truth. Both the U. S. and Iranian perception of the location of enemy units, which is
- realistically imperfect, is maintained using two additional lists that reflect the perceived (not actual) inhabitants
of this grid system. Movement of naval units is restricted to sea grids, and ground units to ground grids, while

aircraft can move freely among both types of grids.
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Figure 3. Geographic Data Base as Stored in the Computer Simulation
B. COMBAT UNITS
1. Overview
Status of the military units is maintained in a 40-element array. Each individual platform (U. S. ship,
U. S. reconnaissance aircraft, U. S. satellite, Iranian air base, Iranian SSM launcher, Iranian reconnaissance
aircraft, or Iranian radar station) is identified by a unique unit number and the information describing the
operational parameters of each unit; individual parameters are modified whenever an event occurs that changes
a parameter during the course of the simulation. The information that is stored for each unit is as follows:
a. Unit Characteristics
1) unit number
2) type of unit
3) current electronic emission status
4) number of hits to kill
5) number of hits against unit
6) unit is targeted (incoming weapon)
b. Location/Movement
1) grid location
2) x - coordinate

3)y - coordinate
4) motion status




5) next waypoint

6) time at current waypoint

T) course

8) speed

9) nominal operating speed

10) waypoints (six different waypoints are stored for each unit)

11) loiter time at a waypoint (six different loiter times are stored for each unit)

Note: a waypoint is a position defined by X and Y coordinates, that a unit is to pass through
at some time during the conduct of the simulation. They are sequentially numbered from one to six, with the
number indicating the order in which a unit will pass through each waypoint.

¢. Weapons Capability

1) number of missiles or attack aircraft carried

2) effective strike range of missile or attack aircraft

3) number of fighter aircraft

4) effective range of fighter aircraft

Note: effective range of an aircraft is the number of miles the aircraft can travel from its
home base (assumes normal operation speed) before it must commence its return journey (i.e. sufficient fuel).

d. Sensor Capability
1) surface sensor maximum detection
2) air sensor maximum detection range
3) ESM sensor maximum detection range
The database, which specifies the parameters of the characteristics of t;,ach unit, constructed for use in
the performance of computer trials and analysis in this thesis is included in Appendix B. The base operational
parameters of each unit (speed, weapons load out, weapons range, number of aircraft, sensor ranges) are
estimated from unclassified publications which describe the military assets of the United States and Iranian
governments; (Sharpe, 1996) and (Gunston, 1980). Specific initial parameters are changed during testing and
exercise of the simulation for analysis. The total numbers of weapons fired during the conflict, and the
subsequent losses, are stored for analysis purposes as separate variables.
2. Weapons
The U. S. weapon systems that are modeled are ship-launched land-attack cruise missiles
(Tomahawk conventional missiles), carrier-based fighter aircraft (F-14) and carrier-based attack aircraft
(F/A-18). The Iranian weapon systems modeled are land-based fighter (F-14) and attack aircraft, and
surface-to-surface missiles (Exocet) launched from mobile land-based platforms. Each unit has a limited
supply of weapons that is carried onboard. Aircraft carriers and air bases are given an initial number of

9




fighter and attack aircraft as its weapons, and U. S. naval warships carry Tomahawk missiles. The
Iranian SSM launchers are the only units that can replenish their weapons supply during the simulation.
Each SSM launcher begins the s1mulat10n with an initial loadout of M missiles, and, when they are
expended, the SSM launcher transits to a supply depot and receives new missiles. Other types of weapons
that are not represented in an effort to simplify the model could be easily added later as an improvement
of the model.

Each unit maintains counters that keep track of the number of weapons it has available at a given
time, and variables which state the effective range of each weapon carried. After a unit assigns a weapon
to engage a target, the number of weapons available for the unit is correspondingly decreased. The model
also maintains counters that track the total numbers of each weapon type fired by the U. S. and Iranian
forces, and the number of weapons destroyed by the defensive mechanisms of their intended targets.

3. Sensors

The different types of intelligence gathering systems that are represented in this model include surface
search and air search radar (ship and land based), airborne radar, visual detection by pilots, electronic support
measures (ESM), satellite imagery, and satellite electronic intelligence (ELINT). The sensors are modeled
using a cookie-cutter approach. In the model each unit is given three different types of sensors with their
associated effective detection ranges, and probabilities of detecting a contact given that it is within the sensor’s
effective detection range. The three sensors are designated surface search, air search, and ESM search. For
instance, the surface search sensor represents a surface search radar for the carrier, while it represents a pilot’s
eyes for a reconnaissance aircraft. All units with the excepﬁon of the mobile SSM launchers and reconnaissance
aircraft are assumed to be constantly emitting (operating radar). On every hour and half-hour the SSM
launcher decides whether it operates its radar for the next half-hour. A Bernoulli trial (probability equal to 0.5)
determines whether the launcher operates its radar continuously during the next half-hour. If the SSM launhcer
is moving, this trial is not conducted and its radar remains off. Using this approach it is possible that the SSM
launcher continuously operates its radar for long periods of time. A more complex model should be used to
represent the SSM launcher radar operations which takes into account the location of enemy surface units and
reconnaissance aircraft which can detect the SSM launcher. When the SSM launchers are transiting, or are at
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the missile reload site, they do not operate their radar. The U. S. and Iranian réconnaissance aircraft operate
their radar whenever they are in flight, and secure their radar the moment they land.
C. DECISION MODULES
1. Movement

a. United States Naval Units

Each ship has a set of W (W = 6 for the simulation runs conducted in this thesis) waypoints
designated prior to running the simulation. The ships will transit in straight line paths between waypoints at
speed Vinip, Where Vg, is distributed as a normal random variable with mean pygy;, (nominal operating speed)
and variance cvm;pz conditioned to be positive. To simulate this random variable, the simulation re-computes the
value of Vg, until a value greater than zero is obtained. The variance accounts for deviations in course and
speed attributed to variations in wind and current conditions, personnel errors, and equipment operational
variability. The equations for computing the course and samplingl for the speed of the ship are shown in

equations (1) and (2). All courses in this simulation are computed and stored using the radian as the unit of

measurement.
2 Ax = 0,Ay >0
Course = -2 Ax = 0,Ay<0
arctan(Ax/Ay) Ax # 0 @)

where N'(punip,Cviip) TEPTesents the distribution of a normal random variable with mean Heship
and variance o’y that is conditioned to be positive

Once a ship reaches a waypoint, it may loiter at the waypoint throughout a pre-determined time interval or it
may immediately commence its transit to the next waypoint. If the ship is programmed to remain at a waypoint,

its motion will be stopped until it reaches the time for it to commence the transit to the next waypoint. The

“ computed track of each ship will not allow it to traverse land grids and maintains each ship within the

geographic boundaries. The algorithm that determines ship motion is described in Appendix C.

Improvements to this model should allow both the carrier battle group and multinational force ships
to react to incoming strike aircraft, missiles, and reconnaissance aircraft by changing their course and speed to
avoid them. The enemy perception module that is described later does not compute an enemy target track. In
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the current model the motion of the multinational force commences at the beginning of the simulation; an
improved model could assess the number of Iranian assets destroyed by the CVBG strikes, and start the
multinational force movement through the straits after a set amount of Iranian weapons capability has been
destroyed.

b. Iranian Mobile Surface-to-Surface Missile Units (SSM)

Mobile SSM sites will move from their present location to a randomly determined position
(waypoint), or to the missile reload site. On the hour, and half-hour, the SSM unit will use a Bernoulli trial
(probability defined in the initial data base) to decide whether it should maintain its position, or compute a new
position. New positions are computed using equations (3) and (4). The new X position (Xssmmy, ) is computed
by drawing an independent random variable from a normal distribution with mean zero and standard deviation
Ox_cnunge and adding this number to the current X position. The new Y position (Yssmy,,, ) is computed similarly
using a normal distribution with mean zero and standard deviation Gy gunge. The Ox dunge AN Oy curge Values
represent a typical movement distance for the SSM launcher (one standard deviation) and is defined by the user
of the model, the value of 10 miles was arbitrarily selected for qdantitétive analysis. The course to travel to this
new position is computed using equation (1). |

XsSMyewy = N0, Ox change) + Xeument position (Ox change =10)  (3)
YsSMpew = MO, OY diarge ) + Youment_positon ~~ (OY chumge = 10)  (4)

where N(0, Gx_aange) TEpresents the distribution.of a normal random variable with mean 0 and
Varance Ox_cunge, and N(0, Oy aunge ) Tepresents the distribution of a normal random variable with mean 0 and
Vatance Oy dunge

The new position may be toward the coastline (closer to enémy naval ships) or inland, and the
direction is purely by chance. On the average the mobile SSM launchers will remain in the same general area,
which maintains the launchers in range of ships transiting near the Iranian coast, but confounds the United
States intelligence picture because of random changes in location.

Once a new position is computed, and before the SSM starts moving, two checks are performed to
ensure the new position is acceptable. The first check ensures the new position is within the boundaries of the
geographic map. If the position is off the map, equations (5) and (6) compute a new position that is within the

geographic boundaries. This check first determines if either the new X or Y coordinate (XSS, YSSMey) 1S
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negative; if a coordinate is negative it is set to zero (Xleft boundary = Ylower_boundary = 0), which is an
acceptable X or Y coordinate. It then determines if the new X coordinate is greater than the maximum X
coordinate of the map (Xright boundary = 700); if it is greater, it is set equal to this maximum value. If the new
Y coordinate is greater than the mammum Y coordinate (Yupper_boundary = 400), it is similarly set equal to its

maximum possible value. This boundary check is applied for any unit that has just computed a new position to

transit toward.
Xiett boundary ifXsSMyey, < Xieg boundary
XSSMnew = Xright boundary If XsSMhew > Xright boundary &)
XSSy,  if Xle&_bomdaxy < XsSMpey < )<figl1£_bamdaxy
Yiower_boudary ifYssMyew < Yiower_boundary
Yssn'new = Yupper_bom&hry lstsmnzw > Y\q:per__bmm&ry (6)
Yssmye if Yiower_boundary < YSSMnew < Yypper boundary

The second check that is performed ensures the new position is located on a numbered grid that is designated
land. The first step of this check determines the numbered grid (Gridy.) where the unit is to be located once its
complete its journey to its new position (XSSmMyey, YSSMNey). If Gridee, is a land grid, this new position is
acceptable and the check is complete. If the Grid..., is a sea grid, the position is changed using equations (7) and
(8) which compute a new position that has a better chance of being within a land grid. In equation (7) and (8)
Gridprecr s the grid where the unit is presently located. Xeoresion 1A Yeometion aré mumbers used to shift Xssmy,
and Yssmy,, so that the new SSM position is located on a numbered grid which is a land grid. The values of
X comection AN Y cometion are set equal to one quarter of the length and width of a‘ grid. For this simulation, the grids
are 20 miles by 20 miles and the values of the X orecion a0 Yoorection are both five miles. This check is repeatedly
performed until the Gridew is a land grid.
XSSMew = XSS + Xoomstion if Gride(col) - Gridpme(col) <0 (7)
XSSMyew = Xoomeetion if Gridew (col) - Gridiesens(col) >0

Yssyew =  YSSMuew + Yeomection if Gridpew (r0W) ~ Gridpresers(col) <0 (8)
Yssmeew = Yoomection if Gridpew (Tow) - Gridpresers(col) >0

Once an acceptable new position (waypoint) is identified, the SSM launcher commences its journey after a one
minute time delay at speed V., where V., is distributed as an independent normal random variable with mean
Hvssm (nOminal operating speed) and variance Gy.e,” conditioned to be positive. V., is computed using equation
(9). The simulation re-computes the value of Vi, until a value greater than zero is obtained to produce a

replication of the conditioned normal random variable.
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Vam ~ N'(HssmOvsem) ©)

If the SSM is moving on the hour or half-hour, it will not stop its journey to compute a new random
position, but will continue on its present course and speed until it reaches the waypoint. If the SSM has fired all
of its missiles, it will commence a transit to its assigned missile depot to replenish its missile battery. The course
and speed to reach the depot are calculated using equations (1) and (9). Once the SSM has reached the missile
depot, it will loiter for R minutes (R = 60), during which ﬁme period the missile battery will be loaded with its
full complement of missiles. Once the reload process is complete, a new waypoint will be chosen using
equations (3) and (4). The original intent was for the SSM launcher to return near its initial position and then
commence its normal movement pattern. The computer simulation maintains the launcher near the reload site
for the remainder of the simulation. This is an incorrect implementation of the simulation and should be
corrected in future revisions. The algorithm that determines SSM movement is described in Appendix C.

¢. United States and Iranian Reconnaissance Aircraft

The reconnaissance aircraft fly in straight line paths between three waypoints at speed V;,-,; where
Vair is a normal random variable with mean pv.,; (nominal operating speed), and variance ov,;” conditioned to be
positive. The random speed accounts for deviations in course and speed resulting from operational and
equipment variations. An independent replication of V,;, is drawn each time the reconnaissance aircraft departs
a waypoint. Every reconnaissance aircraft is assigned a unique search pattern in the data base which is
oompﬁted with respect to the location of the air base or current location of the aircraft carrier on which it is
located. Every unit has a posiﬁén which is defined by an X and Y coordinate. A new position can be defined in
terms of the direction and distance from a current X coordinate and the direction and distance from a current Y
coordinate. The following procedure defines the east (Xdirection = 1) or west (Xdirection = -1) direction a new
X coordinate is located with respect to the current X coordinate and stores it in the variable Xyieion. A new X
coordinate is then computed by multiplying the Xsion by a specific X distance, denoted Kiravel_distarce, and adding
this product to the current X coordinate. A similar procedure is then used to compute the Y coordinate using the

variables Ydirection (north = -1, south = 1) and Ytravel distance. The travel distances are the distances in miles
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that an aircraft will travel in the x and y directions to reach its next waypoint. These distances are constant and
set prior to the commencement of a simulation run in the initial data base

A reconnaissance aircraft flies from its aircraft carrier or air base to its first waypoint (X[1], Y[1])
which is computed using the carrier or air base as the current position and the variables Xiection, Yairections
X[ 1] iravel_distarwes @0 Y1 iravey_distance- In the case of an Iranian reconnaissance aircraft, all variables are defined in
the simulation or the initial data base and do not change during the simulation. For U. S. reconnaissance
aircraft, the only variable that is not permanently defined is the Xreuion, Which is computed to be the same east or
west direction as the carrier’s present course. After the first waypoint is computed, the second waypoint (X[2],
Y[2]) is computed with the first waypoint(X[1],Y[1]) defined as the current position, and the variables Xieaion,
Yairection, X[ 2Jrevet_distarsces AN Y[2)ravel_distarce- The $ame Xegirection AA Ygirection variables are used for this
computation, but for an Iranian aircraft, the product of the Xerection and X[2]ravet_distance iS Subtracted from the
current X coordinate instead of .added as done in computing the first waypoint. The third waypoint is not
defined until the aircraft has arrived at the second waypbint. The third waypoint(X[3],Y[3]) is always set equal
to the X and Y coordinates of the air base or aircraft carrier from which the aircraft started its flight. Since an
aircraft carrier is constantly changing position, a U. S reconnaissance aircraft is required to compute a new third
waypoint (X[3],Y[3]) every minute until it reaches the location of the carrier and completes its flight. Figure 4

shows an examplé Iranian reconnaissance aircraft flight pattern, which is indicated by the solid lines and
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determined using equations (10) through (15).
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Figure 4. Iranian Reconnaissance Aircraft Search Pattern

Krection = 1 (fly east) or -1 (fly west) {set from initial data base})
Yirection = 1 (fly south)

Y[1] = Ypresent tocation + Yeirection ® Y1 iravel_distarce 10)

X[1] = Xoresent_location + Xirection ® X[1]avel distance 1D
Y[2]=Y[1] 12)

X[2] = X[1] - Xairection ® X[2]ravel_distance 13)

X[3] = Air Base yresent_tocation 14

Y[3] = Air Base yprecent 1ocation 15

Vi~ N'(MaxOvi) 16

The Iranian aircraft departs from the location of the air base and travels in a straight line to its first
waypoint(X[1],Y[1]). The aircraft then computes a new course and speed to reach the second waypoint
(X[2],Y[2]) and commences travel.. ‘The aircraft then flies directly back to the air base(X[3],Y[3]). The course
and speed for each leg of an Iranian reconnaissance aircraft flight pattern are computed using equations (1) and
(16).

The two waypoints a U. S. reconnaissance aircraft flies through are computed prior to launch, and

depend on the present location of the aircraft carrier. Figure 5 provides an example of a U. S. reconnaissance
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aircraft search pattern, which is indicated by the solid lines and determined using equations (10) through (12),
and (17) through (21). The definition of the Xyewion Variable determined in Equation (17) causes a U. S.
reconnaissance aircraft to fly a pattern away from tile carrier, but in the same direction of the carrier’s motion
east or west. This allows the aircraft to detect threats that are located in the area of the carrier’s intended
movement.

A U. S. aircraft departs from the current location of the mﬁer and travels in a straight line to its
first waypoint (X[1],Y[1]). The aircraft then determines a new course and speed and commences travel to the
second waypoint(X[2],Y[2]). The aircraft then returns to the aircraft carrier(X[3],Y[3]). During its return
flight to the carrier, the aircraft computes a new course and speed every minute to account for the movement of

the aircraft carrier. The course and speed for each leg of a U. S. aircraft flight are éompmed using equations (1)

and (16).
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Figure S. United States Reconnaissance Aircraft Search Pattern
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Kisn = 1 @y cash) 0 < CVeume <2 a7

—1 (fly west) 72 < Voo <7 (18)
Y direction = -1 (fly north)
Y[1] = Ypresent jocation + Yirection ® Y [1]iravel_distarce (10)
X[1] = Xresent,1ocation + Xirection ® X[1livavel_distance 1)
Y2]1=Y[]] (12)
X[2]) = X[1] + Xirection ® X[2]travel_distance 19
X([3] = Copresent location (20
Y[3] = CVypresent location 2D

Once the aircraft reaches the carrier or air base, it remains on the surface for a certain time interval
(loiter time), which represents the refueling and maintenance of the aircraft, and rest for the crew. The loiter
time for the aircraft is tracked by the same method used for naval ships. When the loiter time has elapsed, new
waypoints are computed based on the location of the air base or present location of the aircraft carrier, and a
reconnaissance aircraft commences flying its search pattern.

In practice, reoonnais_sance aircraft tend to follow courses that are judged to be potentially
informative. The specific waypoints defined for the analysis performéd in this thesis ensure that the courses are
potentially informative. In a realistic e,nvironmenf, aircraft cueing, e.g. by an external (satellite) or shipboard
sensor, is used to vector aircraft to a specific location. This feature is not represented in the model, but is a
desired improvement. A reconnaissance aircraft also needs the ability to alter its flight path if a hostile aircraft
or missile is detected near the plane. In this model the reconnaissance aircraft are susceptible to attack by fighter
aircraft that defend the CVBG and the air base. Fighter and attack aircraft are considered weapons systems for
the purpose of this model and are discussed later in this section. The algorithm that determines reconnaissance
aircraft motion is described in Appendix C.

d. Satellites

Each satellite moves between two waypoints that are defined in the initial data base. The course
" thata satellite follows is computed using equation (1), and the speed is constant (no variance) and is also defined
in the initial data base. Each satellite travels from its initial waypoint to the other waypoint. Once it reaches the
new location, it loiters a set amount of time, which is intended to represent the time the satellite is passing over
other regions of the earth during its orbit. Once the time is reached for the satellite to commence a pass over

Iran, the satellite travels from its present location to the other waypoint. This simulates a back and forth pass
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over the same region which is not correct, but is done as a programming simplification. For the purpose of this

study, the waypoints are defined so that the satellites fly over areas of Iran where SSM launchers and air bases
are located. The initial data base provides the U. S. forces with a pair of satellites. One of the satellites flics over
Iran south to north, and one flies east to west.

2. Search and Detection

a. Assumptions

1. The ESM and ELINT sensors are only able to detect and localize targets that are emitting,

2. The air search sensor only detects airplanes.

3. The surface search sensor detects ships, SSM launchers, air bases, and radar sites.

4. This model does not take into account the altitude of the aircraft.

5. The U. S. satellites are undetectable by the Iranian sensors.

6. All detection information is immediately shared among all friendly units (i.e. communications
links work perfectly: there is no congestion delay).

7. The U. S. assets always emit (radar in operation), and therefore are susceptible to detection by
the Iranian ESM sensors. Iranian air bases and long range radar sites always emit, and therefore are susceptible
to detection by U. S. ESM sensors.

All of these assumptions are candidates for modification in later revisions of the model.

b. Search and Detection Theory

Each sensor system'has a maximum detection range expressed in the depth of surrounding grids
throughout which there exists a positive probability of detecting an enemy unit. That is, if the range is one grid,
detections occur within the grid at which the sensor is located, and all adjacent grids, (assuming a target
susceptible to detection is present). The detection range assumes that the sensor is located in the center of the
grid,

Each sensor has a probability of detection given a unit is within its detection range. Upon detection
of an enemy unit, the perceived location of the enemy unit is reported by the sensor, which is the actual location

(ground truth) offset by errors in the x and y direction. This perceived location is distributed as a circular normal
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distribution with parameters p, 1y, and Gunsor. The values of i, and p, are the ground truth x and y coordinates
of the target, and Onr Which is a sensor error term accounting for the accuracy of the physical sensor and
human operator of the system. The information de;ived from each sensor is assimilated with previous detections
of the same unit to refine the intelligence estimate of enemy capabilities.

¢. Search and Detection Implementation

On every time step (one minute), each unit searches for enemy units using all three of its sensor
systems in order: surface, air, and ESM. For each sensor, the model determines the grids surrounding the unit
where detections may occur given a target is present, and then sequentially searches each grid. Within each
grid, the model individually examines each enemy unit located on the grid’s list of enemy units and determines if
it is eligible for detection by the sensor (i.e. aircraft by air search sensor, unit that is emitting by ESM sensor,
etc.). Given it is a candidate, an independent uniform random variable with range [0,1] is drawn. If the random
variable, which is denoted Hoerecsion , is less than the probability that the sensor detects a target given it is within
its search area, a detection occurs. If a target has been detected; the sensor reports the perceived location of the
target as described previously. Equations (22) and (23) illustrate this approach.

Hdetectian ~ U(O>1)

Detection occurs if Hoetection < Pdetfsensor]

No detection if Hietection > Paet[sensor] (22)
Perceived Location ~ N(j, Ky, Csensar) 23)

This simulation assumes that all sensors perfectly determine the identity of a target (unit
identification number) and there are no false detections.
d. Intelligence Estimate

As discussed earlier, enemy unit detections are maintained on lists that are resident on the grid
system. Each force has 700 lists of detected enemy targets (a list for every grid). Some of the lists contain
numerous targets, while others remain empty the entire simulation. These lists identify the units by a specific
unit number, the current estimate of its Cartesian location, the number of detections of this enemy unit, and the
time of the latest detection. Each time a sensor makes a new contact, i.e. achieves a detection, it determines the
grid location corresponding to the perceived location reported by the sensor. The list located on that grid is then

scanned to locate previous observations on this particular contact. If there is a contact history, an average
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updating process is used to refine the contact location, otherwise the new contact is added to the list as a different
entity. The perceived location of a target may be on a grid where the target is not actually located. If two
separate detections locate the same unit, but ﬁle perceived locatioﬁs are §igrﬁﬁcanﬂy different and place the units
on two different grids, there will be an entry for the unit on each grid. In a real scenario, a person analyzing this
information may believe there are two separate contacts. However, the weapon targeting model of this
simulation does not allow the firing of two separate sorties of weapons at the same target based on entries on two
different grid lists.

Equations (24) through (26) describe the information fusion process. The variables Xoerception oid,
Y perception oid, @nd number of observations are defined for each unit that is located on a grid’s list. If a unit is
located on two separate grid lists, it has a set of three variables for each list. The informatioﬁ contained within
those two sets of variables which are defined on different numbered grids is never combined to provide a more
precise estimate of a unit’s actual location. The Xpereption otd @0 Yperception o4 Variables are the average X and Y
perceived locations over all detections of a unit which place it on a particular grid, but does not include. the most
recent detection.  The number of observations is the number of times the unit was reported on this grid prior to
the mést recent detection. The Xoereption new aNd Yperoeption new Variables are the average perceived X and Y
location of the unit after they have been averaged with the most recent detection. The number of observations is

incremented to indicate incorporation of this new detection in computing the unit’s average perceived location.

Koerception_new = (#ODSEIVALONS ® Xerveption old + Xperception_new)/ (Hobservations + 1)  (24)

Yperveption_new = (FODSEIVAtions ® Yereption old + Yperoeption_new)/(#Observations + 1) (25)

#observations = #observations + 1 26)

The model deletes a contact position on a specific grid if the contact has not been reported as
detected on that grid by at least one sensor among the entire force, during the latest 7 update cycles ( 7 = 15
minutes). This is done to eliminate contacts on the targets that have changed grids, were reported incorrectly as
on a grid, or have been killed. The model does not allow a sensor to detect a target that has been killed.

3. Weapons Engagements

a. Engagement Theory
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Each weapon system is assigned probability of defeat by the target’s defensive mechanisms
(Paetear) and a probability of hit (p;) against a particular target type by the user prior to a simulation run.
The defensive capability of each unit against a type of weapon is aggregated into a single number (Pgeses: )
that represents the probability that the unit will defeat an incoming weapon prior to the weapon releasing
its ordnance. Each unit has is assigned a different probability of defeating an incoming weapon for each
type of weapon that it may encounter. Defensive weapons systems such as Iranian land-based surface-to-
air missile (SAM) sites, which protect high-value targets (air bases, radar sites) are included in this
aggregation. The only time an incoming weapon is susceptible to destruction is when it reaches its target.

In a real conflict, the probability that a unit can defend itself is affected by previous damage
incurred by the unit. The computer implementation of this simulation model assumes a unit’s defensive
capabilities are fully operational until it is destroyed. This model could be improved by determining the
strength of a unit’s defensive ‘capabilities based on the number of hits it has previously received and
decreasing the probability that its defensive mechanisms defeat an incoming weapon (Paeteat)-
Additionally, in the case of naval ships operating as a task group, the damage to the group as a combined
entity, affects the ability of each unit to defeat incoming weapons. Under wartime conditions, the
Ticonderoga class cruisers are responsible for the air defense of the carrier battle group. If the cruiser is
damaged then the ability of all other units to defend themselves against air attacks is diminished. This
feature should also be addressed in future improvements of the model.

The determination of whether a weapon scores a hit against a target depends on its
probability of hit (ps;;) against that target type and the accuracy of the targeting information at the time of
fire. In this model the probability of hit represents all weapon delivery error (wind, targeting computer,
etc.). The probability of hit is reduced due to target location erroré. A targeting model, which is discussed
later, designates a sortie, which is a specific weapon type and the number of weapons of this type to fire at
a target. The sortie is targeted at the location where the aggressor believes the enemy is positioned
(Xperceiveds Yperceived) The distance between this position and the ground truth location of the target (Xaetual,
Yactuat) 1S Used to compute a multiplier (Dy;,), which degrades the probability (Py;,) that a weapon scores a
hit against the target (Phit)Phit. This simple approach, which is shown in equations (27) and (28),
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describes how the accuracy of the perceived target’s position influences the probability that the weapon
scores a hit against a target. Since it computes the aimpoint error at the time of fire, it does not enable the
weapon to receive mid-course guidance, or model weapons that can manually adjust their course, such as

piloted aircraft and radar-secking secking missiles.

\/ (Xactual — Xperceived )2 + (Yactual - Y, perceive'd)2
10

AimptError = 27

D= if Aimpoint Error < 10 miles
2 if Aimpoint Error > 10 miles (28)

Until the sortie reaches the target and the result of the strike is determined, no other sorties
can be fired at the target. This does not allow for a force to utilize the tactic of saturating the enemy with
incoming weapons. When employed, this tactic increases the probability of some of the weapons evading
a target’s defensive mechanisms and striking the target. The weapon selection decision module does not
select a mixed group of weapon types to fire at a single target.

The simulation time at which the sortie is to arrive at the target’s location is computed using
the distance between the sortie’s point of origin(Xsring unit, Yéring wir) and the ground truth location of the
target(Xactual, vactuat), the nominal (operational) speed of the weapon type ( Weaporg speed) which comprises
the sortie, and a preparation time. The preparation time represents the time required to compute a firing
solution and prepare weapons. This time is referred to as the on target time (OTT) and is computed using

the equation (29).

. . 2 . . 2
Xfiring _unit — Xactual)* + (Yfirin t - Yactual
OTT = Present Time + Prep Time + \/( iring._ )+ (fring_uni ) 29
Weapon speed

This assumes that the target does not change location during the sortie transit time, which is not realistic
but is done for simplicity of modeling. The flight path of missiles and fighter and attack aircraft are not
placed on the grid system. This is a simplification of the model and ignores the intelligence gained by
placing it on the grid. An attacking aircraft provides additional reconnaissance during its flight, and the
direction of an incoming strike gives the target a rough idea of the location of the platform that launched

the strike.
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Once the simulation time is reached that indicates a sortie has arrived at the target’s location,
an adjudication of the attack is conducted. During conflict adjudication, the model first determines how
many of the weapons in the sortie evaded ﬁe target’s defensi\.le mechanisms (Pdefear). During a real strike,
the direction and time that multiple weapons arrive at a target are not always the same. For example, a
group of attacking aircraft may separate on their final approach to a target and attack from different
directions and in waves to confuse and complicate the defensive response of the target. As a result, in this
simulation, the determination of whether a single weapon of a sortie evaded the target’s defensive
mechanisms is considered independently of the sortie’s other weapons. Hence, the number of weapons
that evade the target’s defensive mechanisms has a binomial distribution with probability of success equal
10 Paefea: and number of trials equal to the number of weapdns in the sortie. The number of hits scored
against the target by those weapons that get through the defensive mechanisms is determined. The
number of hits has a binomial distribution with probability of success equal to PyzeDy; and number of

trials equal to the number of weapons that survived the target’s defensive mechanisms.

Each unit has a counter that keeps track of the total number of hits it has sustained during the
course of the simulation. The total number of hits the target received during this strike is added to the
counter, and a check is performed to ensure the target has not exceeded its maximum number of hits. A
target that has sustained at least its maximum number of hits is considered destroyed. If the target is
destroyed, its type is changed to indicate it no longer exists. This means that its sensor, weapon and
propulsion (movement) systems ‘are rendered non-functional and provide no input for its respective force
the remainder of the simulation. If the attacking sortie éonsists of aircraft, the number of the aircraft that
are not destroyed by the target’s defensive mechanisms are returned as available assets onboard the
carrier or air base after a time delay which accounts for their return flight.

b. Engagement Implementation

(1) Overview. The model maintains two engagement lists for conflicts between the two forces,
one for the United States force striking Iranian units, and another for an Iranian force striking U. S. units.

During every update cycle, the targeting module examines every grid’s intelligence estimate list sequentially,
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starting at grid one and finishing at grid 700. Three steps are performed in this examination phase for each
enemy unit on a grid list that is not currently targeted (i.e. a weapon is not enroute to the target) or dead, which
determines the action to be taken against an enemy unit. The first step classifies the threat level of the target,
and determines the closest miésile—cnpable and aircraft-capable friendly unit that has weapons available to
engage the target. In the next step, one of the two umits is assigned to prosecute the target using a sortie. The
decision of which unit to assign is based on the target type and is described by the targeting algorithms included
in Appendix C. Finally, the time for the sortic to reach the enemy unit (time of conflict adjudication) is
computed, and the conflict placed on the engagement list. It is important to note that these three steps are
performed on each target individually before addressing the next target. Also all contacts on the grid one list are
examined and decisions made on weapons to fire at all of the targets listed as on grid one prior to examining
targets that are listed as on grid two, and so forth. A result of this process all targets are prosecﬁted, whether
high or low threat until weapons supplies are depleted starting at the lowest numbered grid. If a high threat
target is located on a grid with a high grid number, the possibility exists that weapons will not be available to
prosecute the target. In future revisions of this model it is recommended that a more realistic weapons allocation
procedure be implemented. Once all targets which exist in the entire grid system have been placed on th15 list, a
determination on which targets to prosecute can be made on the basis of threat level.

(2) Threat Determination and Closest-Unit Selection. During this step, the enemy unit is
classified as a high, medium, or low threat, in accordance with the algorithm located in Appendix A. The
a1goriﬁ1m first compims the distances between the perceived enemy position (Xpereived, Yperceivet) a1 every one of
the friendly units. If any of the distances is smaller than the effective weapon range (of a weapon that can attack
a given friendly unit) of the enemy unit, it is classified as a high threat; otherwise it is a low threat. There are
two exceptions; an Iranian Jong-range radar site is classified as a medium threat, and an Iranian air base which
is located where its aircraft are not within the range that they can strike any multinational force or U. S. naval
ships is classified a medium threat instead of a low threat. During this step the distance information is used to

identify the closest friendly missile-capable unit and aircraft<capable unit that has both weapons available
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(#weapons > minimum reserve number of a weapon that must remain onboard a unit at a11 times), and is located
within effective weapon’s strike range of the enemy unit for possible target prosecution.

(3) Assign Unit and Allocate Weapons. There is a separate decision module for each force
(U. S. and Iranian) which determines which unit prosecutes a given enemy unit, and the numbers and type of
weapon to utilize. Both of these decision modules are somewhat arbitrary and do not follow any known military
guidance. Alternative decision processes can be rmsonably contemplated and studied within the structure of
this simulation. The decision module bases its unit selection on the level of threat, and the type of enemy unit.
For example, a high threat Iranian air base will be assigned to an aircraft carrier using numerous attack aircraft,
whereas, a low-threat Iranian air base would be assigned to the closer of a Tomahawk-capable warship or a
carrier dispatching a smaller number of attack aircraft. The two algorithms that determine U. S. and Iranian
weapons allocation are located in Appendix C. Once the unit and weapon assets are determined, the counters
that track unit weapon availability and the force weapon use are updated accordingly. In the case of attack or
fighter aircraft, the carrier or Iranian air base will not gain the availability of those assets until the strike is
completed (conflict adjudicated) and aircraft fly back to their point of origination.

(4) Engagement List. There is a separate engagement list for each force (U. S. attacking
Iranian and its counterpart). The time the weapon is on target and aimpoint error degradation (D) is computed
as stated previously in the engagement theory discussion. The engagement is then added to the engagement list.
Each item on the list identifies the time the weapon reaches the target, the unit that fired the weapon, the enemy
unit that is under attack from this weapon, the type of weapon, the number of weapons fired, and the aimpoint
error. Once a conflict is adjudicated it is removed from its engagement list. This entire targeting process may be
improved by developing more detailed threat prioritization rules, and refining the rules to assign weapons to a

target based on current military doctrine.
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¢. Conflict Adjudication
(1) Defensive Weapons. When a sortie reaches its intended target, independent Bernoulli
trials are simulated for each weapon of the sortie in accordance with equation (30) to determine if the
number of weapons that survive the target’s defensive mechanisms. Hey., is a draw from a unifoﬁn
distribution over [0,1].
Haepear ~ U(0,1)

Weapon survived if Hiefear > Pacteat
Weapon destroyed if Haefear < Paeteat (30)

The independent assumption is used since weapons fired at a single target are often fired at
different times and may approach the target from varied directions. If the weapon is not destroyed, it then
has a probability of scoring a hit against the target.

This representation of the defensive weapon systems is simplistic in nature, and further
improvements should model significant defensive systems as separate entities. Another improvement to
the model would allow the engagement of incoming weapons prior to reaching their target. In a real
conflict, U. S. strike aircraft would have to avoid Iranian SAM sites located just inside Iran’s borders, and
Iranian strike aircraft could be engaged by U. S. combat air patrol aircraft and surface-to-air missiles from
U. S. warships long before they reach their intended target. |

(2) Offensive Weapons. Once the number of weapons that survive the target’s defense
mechanisms is computed, the number of hits scored against the target is determined in accordance with
equation (31). Independent Bernoulli trials are conducted for each weapon striking the target to

determine how many hits the target sustained. Hy; is a draw from a uniform distribution over [0,1].

Hyie ~U(O,1)
Weapon hit target if Hyir < pric® Dy
Weapon missed target if Hy;e 2 Drit ® Dy . 3D .

Whenever an aircraft carrier or air base is a target, it is assumed that both the area where
planes are launched (runway) and the location of planes on the surface are targeted. This model does not

possess the detail required to adequately account for the attrition of planes under these circumstances,
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however, a simple approach is implemented which recognizes the attrition of planes. A number is
defined, Acyueapon oy, Which attempts to represent both the location of aircraft throughout an air field, or
aircraft carrier, and the lethal area of an incoming missile or bomb. These numbers for U. S. weapons
against an Iranian air Base aﬁd Iranian weapons against a carrier are defined at the beginning of the
simulation. This number does not address airplanes that are grouped together in the same area, so an
additional random number is computed called the effectiveness (E) of the strike to identify this situation;
E is a uniform random variable over [0,2]. The range of the uniform random variable was arbitrarily set
between zero and two for analysis purposes. The total number of aircraft killed is computed using
equation (33). This equation uses the number of aircraft that are located on the air base or carrier at the
time the conflict is adjudicated. Since both attack and fighter aircraft may be destroyed at a location, the
model divides the number of aircraft killed in proportion to the number of each aircraft that is located at
the base or on the carrier. If the number of fighter or attack aircraft killed exceeds the number of aircraft
at a location, the maximum number of that kind of aircraft is destroyed. This approach is illustrated

using equations (32) through (35).

E ~U(0,2) (32) -
# Aircraft Killed =#hits e Acweapontype o# Aircraft o E 33
# Fighterdircraft
Fighter Killed = (—'g—erﬂ) # dircrafiilled (4)
# Aircraft
i #Attaclofl ircraft
Attack Aircraft = | ——————— |# dircrafiKilled (35
# Aircraft
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IV. SIMULATION

A. OVERVIEW

The simulation consists of the model, variables that record aggregate weapons and unit information,
and decision modules that force the units within the model to interact over the course of a multiple-day battle.
The simulation occurs in cyclic updates; it is performed at one-minute intervals of cycle lengths, but is easily
modified to change the length of cycle. The simulation is programmed in the C++ language to perform
quantitative analysis.

There are three different sources of information which affect the results of the simulation. The three
sources are the initial database (geographic and force structures), the decision modules that govern force
interactions, and the decision parameters utilized in the decision modules. All three of these are fixed prior to
conducting a simulation run. This thesis concentrates on studying ﬂ1§ effects of adjusting the force structure and
characteristics of individual units in the initial database.

The output of the simulation consists of three files that track specific parameters over the course of the
simulation. The output files are used to keep track of the locations of all units during the simulation,
damage incurred by individual units, the total number of weapons fired, weapons destroyed, and
casualties incurred by all forces at the end of the two-day battle.

B. UPDATE CYCLE

The update cycle is diagrammed in Figure 6. The initialization phase, which loads the
geographic, U. S., and Iranian force structure database, and initializes all counters, is conducted at the
beginning of a simulation run. During a typical cycle, each unit loiters or continues its transit towards its next
waypoint. Each unit then uses all of its available sensors to detect enemy contacts. After each foroe processes all

“the information received from its sensors, a refined intelligence estimate is drawn. Each force then determines
the enemy units that it considers threats, and commits units to use their weapon systems to strike enemy units. If
any weapons have reached their intended target, the resulting conflict is adjudicated. If the time is reached for
an aircraft to return to its point of origin, the number of available air assets for its carrier or air base is updated to
reflect its return. The clock is then incremented and the process continues.
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Figure 6. Simulation Update Cycle

1. Initialization

The initialization phase of the simulation loads the grid infonﬁation onto the map from a data file. The
simulation then reads the list of units from a data file into the array. The sixnﬁaﬁon then examines the initial
location of each unit to determine the grid where each unit is located, and adds each unit onto the list for its
respective grid. Initially, all units are stationary and will change position according to the movement algorithms.

There is presently no initial intelligence estimate. A separate data file (resulting from random initial sightings

of enemy units) may be incorporated later as an initial intelligence estimate. ’

2. Clock

The simulation performs an update cycle at one-minute intervals of real time. This implies that each
unit’s position will change using the distance it covered over the last minute of time. The one-minute interval is
chosen to accommodate aircraft and missiles which move at high speed. |

3. Movement
This phase of the simulation determines whether a unit is in motion, or should start movement. If it is

in motion it computes its present location and checks to see if it moved to a new grid. Ifit has moved to a new
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grid it updates the associated grids to reflect this change. If motion starts on this time step, it updates the unit to

show that it is in motion and determines the time at which the unit will reach its next waypoint. All motion is
conducted according to the algorithms located in Append1x A. The movement of all units is updated during
every cycle which equates to one minute of scenario time.

4. Sensor Update

Every sensor in the simulation examines all the grids within its maximum detection range during each
time step. The intelligence estimate is then updated accordingly. If there is no detection of a contact for the last
T minutes of simulation time, the contact will be dropped from the intelligence estimate. The satellite assets,
which are an important factor in this simulation, have a behavioral artificiality: each scans over a collection of
grids (a region of the Iranian country), but during the next pass of the satellite ovef the same region, it scans the
grids in reverse order. This is a computer artificiality because of the method used to simulate traveling between
waypoints.

5. Enemy Targeting

The model generates the two engagement lists and updates global variables which track total force
weapon use. Whenever an enemy unit is targeted, the targeted variable of the unit is flagged to indicate a weapon
is enroute, which prevents multiple weapons fired at the unit at the same time. The simulation does not model
the situation in which commanders desire to saturate one target with multiple types and numbers of weapons.

6. Conflict Adjudication

During this step, the simulation examines each conflict on the engagement list and determines if the
weapon is now over the target. All the engagements that meet this criterion are removed from the engagement
list and adjudicated. After the conflict is adjudicated, the model updates variables to indicate weapons and units
destroyed, and places any surviving attacking aircraft on the time delay list. If a unit survived the assault, its
targeted variable is unflagged, and it may now be fired at again.

After all the conflicts for a given time step have been adjudicated, the simulation examines the list of
aircraft that are flying back to aircraft carriers and air bases. All attack and fighter aircraft that have completed

their return flight during this time step are added as available assets to their respective carrier or air base.
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C. SOURCES OF INFORMATION

As previously discussed, the simulation is influenced by three different sources. The first is the
algorithms and their decision parameters (numbers of asset to use in a strike attack, the number of weapons a
unit must mamtam in reserve, etc.) that define the decision modules utilized in the simulation. They specify the
doctrine under which the battle is conducted, which remains unchanged for the analysis of this thesis. The
algorithms that were used to realize the simulation as a computer program are included in Appendix C. The
second influence is the list of constants related to sensor and weapons effectiveness probabilities that are used in
the decision modules. The constants specify probabilities (Pueects Paesas and Pyy), sensor accuracy, weapons
speed, and lethality of weapons. These parameters are constant for a given set of simulation runs and are listed
Appendix D. The third source, is the initial characteristics of each unit, and the numbers of units that are loaded
into the simulation. The initial characteristics include weapon types, numbers, and ranges, unit operating
speeds; intended track; number of hits a unit can withstand and remam functional; sensor range; and emissions
control status. This information is maintained in the initial force database and is the easiest source of
information to vary.
D. COMPUTER MODEL

The simulation is coded using an object-orientated approach in the programming language C++ which
is included as Appendix E. Many of the programming techniques and data structures were drawn from C++
How to Program (Deitel, 1994). The data structure which stores the characteristic of each grid and unit defined
by the initial database, and the decision module algorithms are hard coded into the simulation. The parameters
which are utilized by the algorithms are also hard coded into the simulation, but are grouped together at the
beginning of the main source code file and are easily modified by anyone familiar with general programming
practices. The geographic and force structure databases were built in one file using a spreadsheet. This file is
easﬂy modified by a user familiar with the operation of spreadsheets, and requires no modification of the

computer code.
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E. OUTPUT FILES

1. Unit movement (Motion.dat)

This file is updated during every‘ time step and reco‘rds ﬂlé Cartesian location of each unit along
with its unit identification number. This file is used to verify the units are moving correctly in accordance
with both the initial database parameters and movement algorithms.

2. Unit losses (Loss.dat)

This file is updated each time a unit is killed. The simulation records the unit identification
number and the simulation time at which it was killed.

3. Unit status (Unit.dat)

This file is the primary data source for measures of effectiveness (MOE) calculations and
evaluation of the battle. This file contains a complete listing of the characteristics of each unit at the
beginning of the simulation (t = 0), and the completion of the simulation. The information includes the
number of hits suffered by each unit, and number of weapons left over after the battle. The first list is used
in verifying that the simulation correctly input the data from the initial database. The second list provides
information for measure of effectiveness (MOE) calculations. At the end of the simulation, the program
also outputs to this file the variables that keep track of the number missiles fired, attack and fighter

aircraft launched, units killed, and aircraft lost on strike or interdiction missions.
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V. EXPERIMENTATION AND ANALYSIS

A. OVERVIEW

The output of this simulation is a function of numerous input parameters. The goal of this thesis is to
construct and exercise a proposed simulation model that has the capability to examine the effect of varying
conditions that relate to the sensors and weapons available to the units that comprise a United States carrier

battle group. A factorial experiment was used to study one instance of the conflict described in this thesis to

examine how changing three of the initial conditions affect the outcome of the battle. The Minitab® Release 11

Jor Windows statistical software package, whose capabilities are described in the Minitab ® Reference Manual

Release 11 for Windows (Minitab, 1996), is used to demonstrate techniques for analyzing the output from this
simulation.

The result of the conflict is summarized using seven measures of effectiveness (MOE), which judge the
outcome of simulation trials with respect to the success of the United States and multinational forces. Output is
gathered by performing computer trials of the simulation; this information is used to calculate the seven MOE.
A 2* full factorial experiment using ten replications of the computer simulation for each factor level was
conducted and analysis performed on the output (specific parameters of the initial .data base and program are
modified as required to vary the conditions to conduct the experiment).

B. MEASURES OF EFFECTIVENESS

The measures of effectiveness are defined to represent the ability -of the U. S. force to accomplish its
mission while minimizing damage to its own forces, and to describe the results in terms of the United States
combat effectiveness and survivability. The measures of effectiveness do not measure the attrition rate of
attacking weapons since they depend .only on the probability of defeat (psg..) by a target’s defensive mechanisms
in the computer implementation of the simulation. The following MOE are defined for the model:

1. Total number of hits sustained among all ships comprising the carrier battle group over the two-day

battle.
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2. Total number of hits sustained among all ships comprising the multinational force over the two-day
battle.

3. Fraction of CVBG ships remainﬁg at the conclusion‘of the ﬁvo-day battle.

4. Number of multinational force ships remaining at the conclusion of the two-day battle.

5. Combined number of U. S. missiles and attack aircraft launched against Iranian targets over the
two-day battle.

6. Total Number of hits scored against all Iranian land-based targets over the two-day battle.

7. Total number of Iranian attack aircraft launched against U. S. ships over the two-day battle.
C. EXPERIMENTATION

The 2* factorial experiment varied three condiﬁoné which are the: (1) The avaﬂability of satellite
intelligence to the U. S. forces; (2) U. S. sensor accuracy; and (3) number of U. S. aircraft carriers. The United
States either receives satellite information from one pair of satellites, or it receives no satellite information the
entire simulation. Upon detection, a sensor reports the perceived location of the target which is the actual
location offset by a normal error. For one level of the sensor accuracy factor, the normal errors for all sensors
have mean zero and variance of 16 miles for surface and ESM sensors and .25 mile for air sensors. For the other
level of sensor accuracy, the normal errors of the United States and multinational force sensors errors have mean
zero and variance zero and so the target is located perfectly; Iranian sensor errors have mean zero and variance
of 16 miles for surface and ESM sensors and .25 mile for air sensors. Hence, the sensor accuracy factor
eliminates the sensor error and mﬁses all U. S. and multinational force sensors to provide perfect information on
the location of a target. The U. S. operates with one or two éircraft carriers in the battle group. The addition of a
second aircraft carrier provides a second air wing with its attack, fighter, and reconnaissance aircraft. The
design of the experiment and the analysis techniques that are applied to develop conclusions are described in
Statistics for Experimenters, An Introduction to Design, Data Analysis, and Model Building (Box, 1978,

pp. 306 - 321). The experimental runs are arranged in the standard order as shown in Tables 1 and 2.
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Table 1. Factor Levels for 2° Factorial Experiment

Variable —_ =
1. Satellites: 0 2
2. Sensoraccuracy:  Normal errors Perfect information
3. Aircraft Carriers : 1 2

Table 2. 2° Factorial Design, Trials Arranged in the Standard Order

Trial factor in simulation
Number Satellites Sensor accuracy Carriers
1 0 Normal errors 1
2 2 Normal errors 1
3 0 Perfect information 1
4 2 Perfect information 1
5 0 Nommal errors 2
6 2 Normal errors 2
7 0 Perfect information 2
8 2 Perfect information 2
D. ANALYSIS
1. Overview

The full 2* factorial experiment was performed with ten replications performed for each factor level.
Each of the MOE computed from the output of the simulation runs is examined using statistical analysis tools.
The experiment results are included as Appendix F.

- 2. Analysis Techniques

The first step in exploring how the initial conditions affected the outcome was to graphically explore
the results of the experimentation. The individual data points were plotted and both these graphs and the data
are included as Appendix F. The plots were examined to note significant trends and determine what analysis
techniques to apply for each MOE.

If the plot of the observations of an MOE leads one to believe that the observational distribution is
- normal, a fractional factorial analysis fit was computed for the MOE using the Minitab® statistical software
package. This analysis first computes a fractional factorial estimate of how each factor individually (main
effect), and when combined with other factor(s) (multiple-factor interaction effect) affects the MOE. The result

of this analysis provides an estimate of how each effect changes the MOE and a probability value (p-value),
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which is the probability of getting a test statistic value at least as extreme as the one actually obtained under the
null hypothesis that there is no effect. If the p-value is less than a desired significance level o, the effect may be
significant and requires interpretation. The main eﬁ'ect of a variable should be individually interpreted only if
there is no evidence that the variable interacts with other variables. When there is evidence of one or more such
interaction effects, the interacting variables should be considered jointly, and other analysis techniques used to
further explore the main effects. In using this analysis technique, first 160k at the three-factor interaction and
decide if it is significant. If the three-factor interaction is significant, interpretation of main effects and two-
factor interaction effects are not valid on the basis of this analysis technique alone. If there is no three-factor
interaction, but one or more two-factor interactions, only the two-factor interactions are interpreted and no
conclusions can be drawn about the main effects. (Box, 1978, pp. 317-318).

The software performs a three-factor analysis of variance (ANOVA), which is a technique that
determines whether the different effect estimates differ from zero more than could reasonably be expected under
the null hypothesis of no effect. The ANOVA technique tests the null hypothesis that the means of the effects for
each level of interaction are equal to zero, against the alternative hypothesis that there is at least one that is not
zero. The software computes an F-ratio and a p-value for each level of interaction (main, two-way, three-way).
This p-value is the probability of obtaining a realization from the F-distribution under the null hypothesis of no
effect at least as large as the observed F-ratio. The theory behind the computation and use of the F-ratio and p-
value in the ANOVA analysis can be found in Probability and Statistics for Engineering and the Sciences
(Devore, 1995, pp. 444-452).

A second procedure, the Kruskal-Wallis test, which tests whether an arbitrary number of % independent
populations are identical is also used, and is applicable to all the MOE results regardless of their distribution.
This test is similar in spirit to one-way ANOVA analysis and tests the null hypothesis that the k populations are
identical, against the alternative hypothesis that there are at least two of the populations that are different. The

Kruskal-Wallis test computes an H-value and compares it to a % distribution to compute a p-value. If the

p-value is so small that the null hypothesis is not supported, it is concluded that the compared populations

are not all the same. A theoretical development and explanation of this test is found in Nonparametric
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Methods for Quantitative Analysis (Gibbons, 1985, pp. 173-179). The Minitab® Kruskal-Wallis test that is
adjusted for ties was used to obtain an H-value and a p-value for each factor.

The Minitab® statistical software package was then used to develop cube plots of the means for each
MOE and compute basié summaxy statistics (mean, standard error of the mean, and standard deviation) of each
individual trial for all MOE.

3. MOE1

Since the data points for MOE 1 appear normally distributed, as shown in the plot included in
Appendix F, a factorial analysis was computed and is shown in Table 3. For any effect with a p-value less
than .05 (o = .05 significance level), the null hypothesis that the mean of the effect is equal to zero is
rejected and the alternative hypothesis that the mean is different from zero is accepted; hence, the effect is
considered significant. The use of this significance level is consistent throughout all analyses that are
discussed in this thesis. The ANOVA table indicates that there is at least one strong two-way interaction,
with a corresponding p-value of .03. Due to the strong two-way interaction which occurs between the use

Table 3. Analysis of Variance Table for MOE 1 with Estimated Effects

Source df SS MS F-ratio p-value
Main effects 3 514540 171510 1237 0.00
'Two-way interactions 3 1343.30 44780 3.23 0.03
Three-way interaction 1 515.10 515.10 3.71 0.06
!Residual error 72 9986.50 138.70
Total ' 79 16990.40

‘Factor Effect p-value
Wmean 28.30 -
satellite -0.43 0.87
sensor -10.38 0.00
carrier 12.23 0.00
satellite & sensor 3.83 0.15
satellite & carrier 5.93 0.03
sensor & carrier 418 0.12
all 5.08 0.06

Note: The value for the mean effect is the overall mean value of MOE 1 for the eighty
simulation runs. The values for the other effects represent the estimated change in MOE 1 when an
individual factor or combination of factors are at their high level (+) as compared to the when all of the
factors are at their low levels (-). The p-value of the estimated effect is the probability that the value for the
effect is actually zero.
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of satellite intelligence and an additional carrier (p-value = .03), the large main effects of perfect sensor
information or adding an additional carrier cannot be interpreted based on this analysis technique. Before
accepting the results of the factorial analysis, a normal probability plot of the residuals is performed to
verify the normality assumption used to enter into this analysis. The plot of the residuals in Figure 7,
shows that the normality assumption is probably reasonable, and the results of this analysis technique are

valid.

Normal Probability Plot of the Residuals
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Figure 7. Normal Probability Plot of the Residuals for the Fitted Factorial
Model of MOE 1

. The most information is obtained about this MOE by examining a cube plot of the means, which
is shown in Figure 8. A comparison of the means for the two levels of sensor accuracy clearly shows that
when perfect sensor information is used, the mean number of hits sustained decreases in all cases except
when an additional carrier is added to the battle group. Iffhe means of the two levels for the number of
carriers in theater are compared, it is noted that the mean number of hits increases with the addition of a
second carrier, regardless of the chénges in the other two factors in all but one case The exception is

. when there aré two carriers, perfect sensor information, and no satellite intelligence. No reasonable
explanation is offered for this exception, and it requires further study. The only conclusion that can be
drawn is that using perfect sensor information when operating with one carrier causes the mean number

of hits sustained by the ships among the carrier battle group to decrease.
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Cube Plot - Means for MOE 1
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How to Read: T he main effect of each factor is seen to be a difference between two averages,
half of the eight results being included in one average and half in the other. The main effects may be
viewed as a contrast between observations on parallel faces of the cube plot. Similarly, each two-factor
interaction is viewed as a contrast between results on two diagonal planes. The mean values displayed on
the cube are also listed in tabular form along with their standard error of the mean and standard deviation.

0 normal errors 1 32 3.5 11.06
2 normal errors 1 ~ 26.9 4.19 13.25
0 perfect information 1 18.7 4.37 13.82
2 perfect information 1 11.1 433 13.68
0 normal errors 2 39.2 4.29 13.56
2 normal errors 2 35.8 2.62 8.28
0 2

2 2

Figure 8. Means of the Total Number of Hits Sustained Among All Ships Comprising the CVBG
Over the Two-Day Battle and Summary Statistics.

4. MOE 2

The number of hits sustained by the ships comprising the multinational force varies between two
numbers and does not appear normally distributed, so an ANOVA analysis was not attempted. Each ship
comprising this group has a maximum number of hits it can sustain before it is considered killed. The
combined total hits for the four ships is 36, and in 27 out of 80 simulation runs all ships are killed. Since
a sortie may contain numerous weapons, it may score more hits than needed to destroy a ship. This

means the number of hits sustained may be greater than the maximum required to kill a ship. In two
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cases, the mean number of ships killed is greater than 36. When satellite intelligence and an additional

carrier is in theater, the mean number of hits sustained by the multinational force is estimated as 20 from
the data listed in Figure 9. This suggests that some of the ships are not killed.

A Kruskal-Wallis test is performed for each individual factor. Each test compared the 40
observations of MOE 2 for a factor at its initial level (-) with the 40 observations at its optimal (+) level.
The results of this analysis are summarized in Table 4. Since the p-values for using satellite intelligence
and an additional carrier are less than 0.05 they are considered significant. This suggests that using

satellite intelligence or an additional carrier causes the number of hits sustained by the multinational force

to decrease.

Table 4. Kruskal-Wallis Analysis for MOE 2

factor H-statistic p-value
satellite 15.52 0.00
sensor 0.19 0.66
carrier 13.12 0.00

Comparing the mean number of hits sustained for each case, it is determined that only when both an
additional carrier and satellite intelligence is available does the mean number of hits sustained by the
multinational force decrease, regardless of sensor accuracy. Since the ANOVA table indicates that a two-

way interaction appears to be present, the results of the Kruskal-Wallis test should be viewed with caution.

Cube Piot - Means for MOE 2
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satellites sensor accuracy aircraft carriers mean se mean std dev
normal errors 374 0.31 0.97
normal errors 36.8 0.952 3.01
perfect information 37.7 0.5 1.57
perfect information 38.5 1.26 3.98
normal errors 37 0.3 0.94
normal errors 19.3 2.44 1.7
perfect information 376 0.37 1.17
perfect information 21.2 2.62 8.3
Figure 9. Means of the Total Number of Hits Sustained Among All Ships Comprising the
Multinational Force over the Two-Day Battle and Summary Statistics.
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The only conclusion that can be stated is that the mean number of hits decrease when the U. S.
forces utilize both satellite intelligence and an additional carrier.

5. MOE3

Only a few ships among the soven comprising the carrier battle group are defeated during the
two-day battle, and the most ships lost during any of the 80 simulation runs is two. This data is not
normal and only the Kruskal-Wallis test is appropriate and the results are shown in Table 5. The results
of the Kruskal-Wallis tests indicate that the use of perfect s'ensor information is significant. Examining
Figure 10 shows that the mean fraction of ships that survive increases when perfect sensor information is
used in all cases except when there are two carriers. These data points are so clustered, that any difference
in the means may be due to normal variations as indicated by the summary statistics. No conclusions can

be drawn for this MOE from this analysis.

Cube Plot - Means for MOE 3
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satellites sensor accuracy aircraft carriers mean se mean std dev
0 normal errors 1 0.9429 0.032 0.01
2 normal errors 1 0.8857 0.036 0.11
0 perfect information 1 1 0.000 0.00
2 perfect information 1 0.9857 0.010 0.05
0 ‘normal errors 2 0.9625 0.030 0.08
2 normal errors 2 0.9875 0.010 0.04
0 perfect information 2 1 0.000 0.00
2 perfect information 2 0.9625 0.190 0.06

Figure 10. Means of the Fraction of CVBG Ships Remaining at the Conclusion of the Two-Day

Battle and Summary Statistics.

Table 5. Kruskal-Wallis Analysis for MOE 3

factor H-statistic p-value
satellite 245 0.12
sensor 5.89 0.02
carrier 2.02 0.16

6. MOE 4

The number of multinational force ships that survive the battle is directly related to the number
of hits that the ships sustain, and there is a strong correlation between MOE 2 and MOE 4. Again
ANOVA analysis is not appropriaté, and Kruskal-Wallis tests are performed. The tests, which are
summarized in Table 6, indicate that both the use of satellite intelligence and an additional aircraft are
significant. The cube plot of the means clearly shows similar findings to those for MOE 2; when satellite
intelligence is available along with a second carrier the mean number of multinational force ships that

Table 6. Kruskal-Wallis Analysis for MOE 4

factor H-statistic p-value
satellite  30.55 0.00
sensor 0.39 0.53
carrier 13.49 0.00

..survive the two-day battle increases. This is consistent with MOE 2 where the use of satellite intelligence
with two carriers caused the mean number of hits sustained by the multinational force to decrease. Since a
two-way interaction appears to be present, the results of the Kruskal-Wallis test should be viewed with

caution. The only conclusion that can be stated is that the mean number of multinational force ships that
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survive the two-day battles increases when the U. S. forces utilize both satellite intelligence and an

additional carrier.
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Cube Plot - Means for MOE 4
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0.22
0.10
0.31
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0.00
0.32
0.00
0.70
0.32
0.97
0.00
0.97

Figure 11. Means of the Number of Multinational Force Ships Remaining at the Conclusion of the

Two-Day Battle and Summary Statistics.

7. MOE §

The data points for MOE 5 appear normally distributed as shown in the plot included in
Appendix F. A factorial fit was computed and a plot of the residuals was generated to check the validity
of the fit. The residual plot, which is displayed in Figure 12, refutes the normality assumption and the

factorial fit was discarded. The Kruskal-Wallis tests, which are summarized in Table 7, once again

indicate that

Table 7. Kruskal-Wallis Analysis for MOE 5

factor
satellite
sensor
carrier

H-statistic
9.25
0.01

44.88

p-value

0.00
0.91
0.00
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Normal Probability Plot of the Residuals
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Figure 12. Normal Probability Plot of the Residuals for the Fitted Factorial
Model of MOE S

both the addition of satellite intelligence and a second carrier are significant. It can be seen in Figure 13
that when a second carrier is added, the mean number of U. S. missiles and attack aircraft launched
against Iranian targets significantly increases. The mean number of missiles and attack aircraft laqnched
also increases whenever satellite information is available, but in the case when only one carrier is in the
battle group; this perceived increase is within the bounds of the standard errors of the means. This leads
one to believe that the second carrier, which brings an additional air wing to both attack the Iranian
targets, and providgs a second set of reconnaissance aircraft, is the reason the mean number of missile and

attack aircraft launches increases.
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Cube Plot - Means for MOE 5
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satellites sensor accuracy aircraft carriers mean se mean © std dev
0 normal errors 1 377 475 - 15.03
2 normal errors 1 393.1 6.09 19.25
0 perfect information 1 388 10.3 32.6
2 perfect information 1 399.2 5.77 18.26
0 normal errors 2 451.2 226 71.5
2 normal errors 2 5§39.7 8.28 26.19
0 perfect information 2 438.2 9.83 31.07
2 perfect information 2 511.4 8.92 28.2

Figure 13. Means of the Combined Number of U. S. Missiles and Attack Aircraft Launched Against
Iranian Targets over the Two-Day Battle and Summary Statistics.

8. MOE 6

Since the data points for MOE 6 appear normally distributed, as shown in the plot included in
Appendix F, an ANOVA table was computed. The results of the ANOVA appear in Table 8 and indicate
that there is at least one strong two-way interaction, with a p-value of .00. Due to the strong two-way
interaction between an additional carrier and satellife intelligence (p-value =.00), the two must be
considered jointly and no conclusions about the large main effects of the availability of satellite
intelligence or adding an additional carrier can be stated based on this analysis technique. A normal
probability plot of the residuals shown in Figure 14 supports the normality assumption which is required

for this analysis.
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Normal Probability Plot of the Residuals
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Figure 14. Normal Probability Plot of the Residuals for the Fitted Factorial

Model of MOE 6
The estimate of the two-way interaction of satellites and carriers suggests that the combined effect of using
satellite intelligence and an additional carrier suggests causes the mean number of U. S. missile and attack

aircraft launches to increase by about 7.

Table 8. Analysis of Variance Table for MOE 6 with Estimated Effects

Source df SS MS  F-ratio p-value
Main effects 3 8120.90 2706.98 63.55 0.00
Two-way interactions 3 2167.20 72241 16.96 0.00
Three-way interaction 1 56.11 56.11 1.32 0.26
Residual error 72 3067.10 42.60
Total 79 13411.40

Factor Effect p-value
mean 104.79 -
satellite 17.13 0.00
sensor 2.03 0.17
carrier 10.43 0.00
satellite & sensor 0.58 0.70
satellite & carrier 10.38 0.00
sensor & carrier -0.63 0.67
all -1.68 0.26

Note: The value for the mean effect is the overall mean value of MOE 6 for the eighty
simulation runs. The values for the other effects represent the estimated change in MOE 6 when an
individual factor or combination of factors are at their high level (+) as compared to the when all of the
factors are at their low levels (-).The p-value of the estimated effect is the probability that the value for the

effect is actually zero.
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Further examination of the cube plot of the means in Figure 13 shows that the same effect is occurring as
in MOE 5. The addition of a carrier causes the mean number of hits scored against Iranian targets to
increase as more attack aircraft are launched due to the additional airwing located on the second carrier.
The increase when there is one carrier and satellite intelligence available falls within the standard
deviations of the compared means. A definitive statement about the one way effect of satellite intelligence
is questionable since it may be accounted for by the standard errors of the means.

Cube Plot - Means for MOE 6
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satellites sensor accuracy aircraft carriers mean se mean std dev
0 normal errors 1 896 1.76 5.56
2 normal errors 1 100.5 1.80 5.70
0 perfect information 1 96.4 2.09 6.60
2 perfect information 1 105.4 2.31 7.29
0 normal errors 2 95 1.33 422
2 normal errors 2 123.6 252 7.97
0 perfect information 2 97.5 1.34 4.25
2 perfect information 2 123.9 2.85 9.01

Figure 15. Means of the Combined Number of U. S. Missiles and Attack Aircraft Launched Against
Iranian Targets over the Two-Day Battle and Summary Statistics

9. MOE 7

Since the data points for MOE 7 appear normally distributed, as shown in the plot in Appendix
~F,a fractiona;l factorial fit was computed. A residual plot, which is shown in Figure 16, verifies that the
assumption of normality is reasonable. The results of the factorial analysis performed for MOE 7 are
summarized in Table 9. Since there are no significant two-way and three-way interactions, the use of

satellite intelligence (p-value = 0.00) and perfect sensor information (p-value = 0.00) are identified as
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significant main effects.

The estimate of the main effect of satellites indicates that use of satellite

intelligence causes the mean number of attack aircraft launched against U. S. and multinational force

ships to decrease by about 36. The estimate of the main effect of sensor accuracy indicates that when

perfect sensor information is used the mean number of attack aircraft launched decrease by about 19.
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Figure 16. Normal Probability Plot of the Residuals for the Fitted Factorial Model of MOE 7

Table 9. Analysis of Variance Table for MOE 7 with Estimated Effects

L

Source
Main effects
'Two-way interactions
Three-way interaction
Residual error
Total

Factor
mean
satellite
sensor
carrier
satellite & sensor
satellite & carrier
sensor & carrier
all

df
3
3
1

72

79

Effect
150.05
-35.90
-18.70

-1.00
9.10
-9.60
6.60
5.40

SS
32790.00
4370.60
583.20
39008.00
76751.80

p-value

0.00
0.00
0.85
0.09
0.07
0.21
0.30

MS:
10930.00
1456.90
583.20
541.80

F-ratio p-value

20.17 0.00
2.69 0.05
1.08 0.30

The Kruskal-Wallis tests and an examination of the cube plot in Figure 17 support these conclusions.
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Table 10. Kruskal-Wallis Analysis for MOE 7

factor H-statistic p-value
satellite 27.62 0.00
sensor 6.40 0.01
carrier .07 0.79

Cube Plot - Means for MOE 7
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0 normal errors 1 178.2 7.53 7.53
2 normal errors 1 148.2 8.76 27.69 -
0 perfect information 1 149.2 578 ' 18.26
2 perfect information 1 126.6 9.32 29.49
0 normal errors 2 185.6 . 6.63 20.45
2 normal errors 2 125.6 717 22.66
0 perfect information 2 159 7.30 23.10
2 perfect information 2 128 5.58 17.64

Figure 17. Means of the Total Number of Iranian Attack Aircraft Launched Against U. S. ships
over the Two-Day Battle and Summary Statistics
E. EXPERIMENT CONCLUSIONS

The track which the ships in the U. S. battle group follow provides protection by keeping them outside
of the maximum weapon range of most Iranian weapons for significant portions of time over the two-day battle.
Hence, MOE 1 and MOE 3 which measure the survivability of the ships among the CVBG do not show large
responses to changes in each of the three conditions. The mean number of hits against these ships does decrease
when perfect sensor information is used for a CVBG consisting of one carrier. The only other MOE which is

affected by using perfect sensor information is MOE 7 which measures the number of attack aircraft sorties that
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Iran Jaunches at U. S. and multinational force ships. It appears that the use of perfect information by the U. S.
increases the probability that a United States missile or aircraft strike scores a hit against an Iranian target,
thereby reducing number of weapons that Iran can fire at the U. S. ships. It is concluded that the use of perfect
sensor information increases the probability that ships among the carrier battle group survive over the two-day
battle.

The track of the multinational force places these éhips within Iranian weapons range early in the battle.
Since reconnaissance aircraft are only flown from a carrier, the ab111ty to locate and target Iranian SSM
launchers and air bases which are located near the multinational force track does not occur until the CVBG
nears the Straits of Hormuz. As a result, the specific scenario used in the simulation makes the destruction of all
multinational force ships by Iran likely. The survivability of the multinational force is measured by MOE 2 and
MOE 4. These measures show that the only condition that enables the some of the multinational force ships to
successfully complete their transit occur when satellite intelligence is available and a second aircraft carrier is
among the battle group. The availability of satellite intelligence provides the U. S. forces a method of detecting
Iranian targets that are either not detected by shipboard sensors and reconnaissance aircraft, or are detected after
they have launched a significant amount of weapons against the multinational force. Not only must the U..S.
detect these targets, but additional strike assets in the form of the second carrier air wing must be available to
attack these targets. Hence, for the scenario of the simulation, it is concluded that for the CVBG to successfully
acoomplish its mission, which is to ensure the multinational force reaches the Arabian Sea, satellite intelligence
and a second aircraft carrier are required.

The mean number of U. S. missiles and attack aircraft launched at Franian targets (MOE 5) and the
mean number of hits scored against Iranian targets (MOE 6) both increase when an additional carrier is added to
the battle group. This is not a surprising conclusion. It appears that the availability of satellite intelligence may
have also caused these MOE to increase, but the analysis shows that the change due to this availability may be

" due to normal variation.
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VL. CONCLUSIONS AND FURTHER STUDY

A. CONCLUSIONS

The analysis of the results obtained from the factorial experiment demonstrate that the outcome of this
simulation model is responsive to the changes related to sensors and weapons which were varied during the
experiment. The simulation results for this one specific conflict show that the use of intelligence information
obtained from satellite assets combined with the assistance of a second aircraft carrier enables the CVBG to
accomplish its mission. When these conditions are not met, all multinational force ships are usually destroyed.
The use of sensors which provide ground truth position reports for all detections does not significantly improve
the mission success of the CVBG which implies that the simulation is not as sensitive to changes in sensor
accuracy as desired.

The simulation model approach presented shows promise of having informative predictive capabilities,
but it presently does not appear to possess sufficient detail to properly measure all aspects of C*ISR. A more
detailed study of this model is needed to properly evaluate its presém mpabxhty to assess the impact of changes in
C*ISR and improve on its shortcomings. After conducting this initial experimeﬁt and analysis, it is clear that for
this simulation model to be a useful predictive tool to a decision maker, it needs to incorporate more realistic data
fusion and decision models (rules) under which the battle is to.be conducted.

B. FURTHER STUDY

This is an initial approach to a stochastic simulation model which utilizes very simplistic decision
algorithms. The first step in improving this simulation model so that it is a more powerful predictive tool is to
refine the decision modules that address targeting, detection, conflict adjudication, and sensor employment. The
algorithms developed dd not follow any formal U. S. or Iranian doctrine. This model can be adapted to
incorporate more detailed decision algorithms using U. S. naval and Iranian tactics and doctrine. .

Another area where further study is recommended is in the detection model. The sensors are given
generic probabilities of detection which are not conditioned on a specific type of target. Also the influence of

weather, jamming, and decoys are not addressed and when incorporated may improve the realism of the model.
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The experimentation performed using this simulation model was very limited in scope. The response
of this simulation can be further studied by changing other parameters, such as detection probabilities, sensor

detection ranges, weapons loadout, or weapons range.
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APPENDIX A. GEOGRAPHIC DATA BASE

X Left X Right Y Upper Y Lower LandorSea Weather

0 20 0 20 1 (Land) 1
20 40 0 20 2 (Sea) 1
40 60 0 20 2 1
60 80 0 20 2 1
80 100 0 20 2 1
100 120 0 20 1 1
120 140 0 20 1 1
140 160 0 20 1 1
160 180 0 20 1 1
180 200 0 20 1 1
200 220 0 20 1 1
220 240 0 20 1 1
240 260 0 20 1 1
260 280 0 20 1 1
280 300 0 20 1 1
300 320 0 20 1 1
320 340 - 0 20 1 1
340 360 0 20 1 1
360 380 0 20 1 1
380 400 0 20 1 1
400 420 0 20 1 1
420 440 0 20 1 1
440 460 0 20 1 1
460 480 0 20 1 1
480 500 0 20 1 1
500 520 0 20 1 1
520 540 0 20 1 1
540 560 0 20 1 1
560 580 0 20 1 1
580 600 0 20 1 1
600 620 0 20 1 1
620 640 0 20 1 1
640 660 0 20 1 1
660 680 0 20 1 1
680 700 0 20 1 1
0 20 20 40 1 1
20 40 20 40 2 1
40 60 20 40 2 1
.60 80 20 40 2 1
80 100 20 40 2 1
100 120 20 40 1 1
120 140 20 40 1 1
140 160 20 40 1 1
160 180 20 40 1 1
180 200 20 40 1 1
200 220 20 40 1 1
220 240 20 40 1 1
240 260 20 40 1 1
260 280 20 40 1 1
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180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
200
200
200
200
200

180
180
180
180
180
180
180
180
180
180
180
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
220
220
220
220
220
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100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680

20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420

440

460
480
500
520
540
560
580
600
620
640
660
680
700
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420

200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200

200

200
200
200
200
200
200
200
200
200
200
200
200
200
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220

220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
220
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
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420
440
460
480
500
520
540
560
580
600
620
640
660
680

20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680

20

440
460
480
500
520
540
560
580
600
620
640
660
680
700
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
20
40

220
220
220
220
220
220
220
220
220
220
220
220
220
220
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240

240

240
240
240
240
240
240
240
260

260

240
240
240
240
240
240
240
240
240
240
240
240
240
240
260
260
260

260

260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
280
280
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40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680

20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340

60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560

580

600
620
640
660
680
700
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360

260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280

280
280
280

280

280
280
280
280
280
280

280 -

280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
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360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680

20

40

60

80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660

380
400
420
440
460

480

500
520
540
560
580
600
620
640
660
680
700
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680

280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
280
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
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680

20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680

20
40
60
80
100
120
140
160
180
200
220
240
260
280

700
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

300
320
320
320
320
320
320
320
320
320
320
320

320

320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
340
340
340
340
340
340
340
340
340
340
340
340
340
340

340

320
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
360
360
360
360
360
360
360
360
360
360
360
360
360
360
360
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300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680

20

40

60

80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600

320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620

340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
340
360
360
360
360
360
360
360
360
360
360
360
360
360

360°

360
360
360
360
360
360
360

360

360
360
360
360
360
360
360
360
360

360
360
360
360
360
360
360
360
360
360
360
360
360
360
360
360
360
360
360
360
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
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620
640
660
680

20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680

640
660
680
700
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700

360
360
360
360
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380
380

380
380
380
380
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
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Unit #

0 1O\ & WN

Al A e~
WO b W —= O

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38

39
40

APPENDIX B. FORCE STRUCTURE DATA BASE

Description

Us.cv
U.S. warship
U.S. warship
U.S. warship
U.S. warship
U.S. warship

AOR

U.S. warship

U.S. warship
merchant
merchant

E-2C

U.S. recon a/c

U.S. recon a/c

U.S. recon a/c

Satellite
Satellite
Satellite
Satellite
US.CV

Iranian air base
Iranian air base

Iranian radar
Iranian radar
Iranian radar
Iranian radar
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM

Iranian recon a/c
Iranian recon a/c
Iranian recon a/c
Unit Type: 1 = aircraft carrier, 2 = U.S. warship, 3 = merchant, 12 = E2-C aircraft, 13 =

Hits to Kill Unit Type Op Speed NotUsed # Missiles or A/C

40
10
10
10
10
10
8
10
10
8

[N S I S )

400
400
400
400
40
60
60

N O\ O\ i b e e b e bl et bt e b 00 Q0 0O OO

1

W NN WNDNDNDNDN

el o T o N Sy S Gy RO S
OV WVVLWWeoW

21
21
22
22
22
22
24
24
24
24
24

24

24
24
24
24
24
33
33
33

20
20
20
20
20

15
600
600
600

46
40
40
40
40
40

S
[~ =}

C OO OO0 OC o

Eff. Range
550
600
600
600
600
600
0
600
600

COC O OO OO O

U.S.reconaissance aircraft, 19 = U.S. satellite, 21 = Iranian air base, 22 = Iranian long range radar site, 24

= Iranian SSM launcher, 33 = Iranian reconnaissance aircraft
Description: Included in the Appendix for clarity, it is not in the actual input data file

Op Speed: Normal operating speed of the unit in nautical miles per hour for ships and aircraft, miles per
hour for SSM launchers.
Missiles or A/C: Number of surface-to-land missiles on board a warship, surface-to-surface missiles for
an SSM launcher, or attack aircraft on board a carrier or air base.
Eff. Range: The effective range of the missile or aircraft in miles, used as a maximum range.
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Unit # Description #Fighter A/C Eff Range Surfacesens Airsens ESMsen X(@©0) Y(0)

1 US.CV 30 200 2 8 2 695 395
2 U.S. warship 0 0 2 8 2 695 393
3 U.S. warship 0 0 2 8 2 694 393
4 U.S. warship 0 0 2 8 2 696 393
5 U.S. warship 0 0 2 8 2 694 395
6 U.S. warship 0 0 2 8 2 696 395
7 AOR 0 0 2 3 0 695 397
8 U.S. warship 0 0 2 8 2 250 360
9 U.S. warship 0 0 2 8 2 252 362
10 merchant 0 0 2 3 0 249 362
11 merchant 0 0 2 3 0 250 362
12 E-2C 0 0 4 6 6 695 395
13 U.S. recon a/c 0 0 2 4 2 695 395
14 U.S. recon a/c 0 0 2 4 2 695 395
15 U.S. recon a/c 0 0 2 4 2 695 395
16 Satellite 0 0 4 6 4 699 200
17 Satellite 0 0 4 6 4 699 250
18 Satellite 0 0 4 6 4 400 399
19 Satellite 0 0 4 6 4 500 399
20 Satellite 30 200 2 4 2 695 396
21 Iranian air base 30 335 2 4 4 410 135
22 Iranian air base 50 335 4 4 4 610 250
23 Iranian radar 0 0 4 4 4 340 210
24 Iranian radar 0 0 4 4 4 405 175
25 Iranian radar 0 0 4 4 4 490 250
26 Iranian radar 0 0 4 4 4 650 295
27 Iranian SSM 0 0 2 4 2 290 200
28 Iranian SSM 0 0 2 4 2 325 205
29 Iranian SSM 0 0 2 4 2 380 205
30 Iranian SSM 0 0 2 4 2 390 202
31 Iranian SSM 0 0 2 4 2 410 195
32 Iranian SSM 0 0 2 4 2 425 195
33 Iranian SSM 0 0 2 4 2 450 215
34 Iranian SSM 0 0 2 4 2 450 230
35 Iranian SSM 0 0 2 4 2 470 250
36 Iranian SSM 0 0 2 4 2 485 265
37 Iranian SSM 0 0 2 4 2 500 . 270
38 Iranian recon a/c 0 0 2 4 2 610 250
39  Iranian recon a/c 0 0 2 4 2 610 250
40 Iranian recon a/c 0 0 2 4 2 410 135

Fighter A/C: Initial number of fighter aircraft allocated to a U.S. CV or an Iranian air base.
Eff. Range: The effective range of the fighter aircraft in miles, used as a maximum range.
Surface sens: Surface sensor range in grid units, 1 unit = 20 miles.

Air sens: Air sensor range in grid units, 1 unit = 20 miles.

ESM sens: Electronic supports measures range in grid units, 1 unit = 20 miles.

X(0), Y(0): Initial (time = 0) x and y positions of a unit in cartesian coordinates.
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Unit# Description

1

00NN bW

=]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

US.CV
U.S. warship
U.S. warship
U.S. warship
U.S. warship
U.S. warship

AOR
U.S. warship
U.S. warship

merchant
merchant

E-2C

U.S. recon a/c
U.S. recon a/c
U.S. recon a/c

Satellite

Satellite

Satellite

Satellite

Satellite

Iranian air base
Iranian air base

Iranian radar
Iranian radar
Iranian radar
Iranian radar
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM
Iranian SSM

Iranian recon a/c
Iranian recon a/c
Iranian recon a/c A
X(1), Y(1): X and y coordinates of the first waypoint for all units exept stationary and SSM units. For
stationary units (Iranian air base and radar sites) all waypoints are equal to X(0) and Y(0). For an SSM

X(1) Y(1) Loiter(1) X(2) Y(2) Loiter(2) X(3) Y(3) Loiter(3) X(4) Y(4) Loiter(4)

460
460
459
461
459
461
460
330
332
329
330
630
680
640
590
10
10
400
500
460
410
610
340
405
490
650
300
300
300
300
300
300
550
550
550
550
550
665
505
475

395
393
393
393
395
395
397
375
377
377
377
350
295
295
295
200
250

10

10
396
135
250
210
175
250
295
150
150
150
150
150
150
200
200
200
200
200
345
385
295

240
120
120
240

9000
9000
9000
9000
9000
9000
60
60
60
60
60
60
60
60
60
60
60
0
0
0

launcher this is the location of the reload site.
Loiter(1): Amount of time units remain at the first waypoint, prior to moving towards the 2nd waypoint.

For stationary units this number is greater than the total time of the battle. For SSM units, this is the time
it remains at the reload site replenishing its missile supply.

X(2), Y(2), X(3), Y(3), X(4), Y(4):

(==l loloNeNoNeNeNeNeNeoNo N

430
430
429
43]
429
431
430
330
332
329
330
500
640
590
540
699
699
400
500
430
410
610
340
405
490
650
300
300
300
300
300
300
550
550
550
550
550
565
555
430

330
328
328
328
330
330
332
315
315
315
315
350
295
295
295
200
250
399
399
331
135
250
210
175
250
295
150
150
150
150
150
150
200
200
200
200
200
345
385
295

720
720
720
720
720
720
720

C OO OO OCT O

240
240
120
120

9000
9000
9000
9000
9000
9000
60
60
60
60
60
60
60
60
60
60
60
0
0
0

460
460
459
461
459
461
460
397
397
397
397
695
695
695
695

10

10°
400
500
460
410
610
340
405
490
650
300

1300

300
300
300
300
550
550
550
550
550
610
610
410

395
393
393
393
395
395
397
237
239
239
239
395
395
395
395
200
250
10
10
396
135
250
210
175
250
295
150
150
150

150

150
150
200
200
200
200
200
250
250
135

all units exept stationary and SSM units. No meaning for stationary and SSM units.

Loiter(2), Loiter(3), Loiter(4): Amount of time units remain at the second, thrid, or fourth waypoints.
No meaning for stationary and SSM units. For a reconnaissance aircraft, Loiter(4) it is the amount of
time it remains at home base until commencing another reconnaissance flight.
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720
720
720
720
720
720
720

OC OO OO OO O

240
240
120
120

9000
9000
9000
9000
9000
9000
60
60
60
60
60
60
60
60
60
60
60
0
0
0

595
595
594
596
594
596
595
422
422
422
422
695
695
695
695
699
699
400
500
595
410
610
340
405
490
650
300
300
300
300
300
300
550
550
550
550
550
610
610
410

X and y coordinates of the second, third, and fourth waypoints for

395
393
393
393
395
395
397
237
239
239
239
395
395
395
395
200
250
399
399
396
135
250
210
175
250
295
150
150
150
150
150
150
200
200
200
200
200

250

250
135

120
120
120
120
120
120
120
0
0
0
0
10
15
20
25
240
240
120
120
120
9000
9000
9000
9000
9000
9000
60
60
60
60
60
60
60
60
60
60
60
30
15
30




Unit # Description X(5) Y(5) Loiter(5) X(6) Y(6) Loiter(6)
1 US.Cv 695 395 1440 699 399 9000

2 U.S. warship 695 393 1440 699 399 9000
3 U.S. warship 694 393 1440 699 399 9000
4 U.S. warship 696 393 1440 699 399 9000
5 U.S. warship 694 395 1440 699 399 9000
6 U.S. warship 696 395 1440 699 399 9000
7 AOR 695 397 1440 699 399 9000
8 U.S. warship 460 370 0 690 399 9000
9 U.S. warship 460 370 0 690 399 9000
10 merchant 460 370 0 690 399 9000
11 merchant 460 370 0 690 399 9000
12 E-2C 55 45 1 130 45 1

13 U.S. recon a/c 15 100 1 40 100 1

14 U.S. recon a/c 55 100 1 50 100 1

15 US.recona/c 105 100 1 50 100 9000
16 Satellite 10 200 240 699 200 9000
17 Satellite 10 250 240 699 250 9000
18 Satellite 400 10 120 400 399 9000
19 Satellite 500 10 120 500 399 9000
20 Satellite 695 396 1440 699 398 9000

21 Iranian airbase 410 135 9000 410 135 9000

22 Iranian airbase 610 250 9000 610 250 9000

23 Iranian radar 340 210 9000 340 210 9000

24 Iranian radar 405 175 9000 - 405 175 9000

25 Iranian radar 490 250 9000 490 250 9000

26 Iranianradar 650 295 9000 650 295 9000

27 Iranian SSM 300 150 60 300 150 9000

28 Iranian SSM 300 150 60 300 150 9000

29 Iranian SSM 300 150 60 300 150 9000

30 Iranian SSM 300 150 60 300 150 9000

31 Iranian SSM 300 150 60 300 150 9000

32 Iranian SSM 300 150 60 300 150 9000

33 Iranian SSM 550 200 60 550 200 9000

34 Iranian SSM 550 200 60 550 200 9000

35 Iranian SSM 550 200 60 550 200 9000

36 Iranian SSM 550 200 60 550 200 9000

37 Iranian SSM 550 200 60 550 200 9000

38 Iranianrecona/c 55 95 22 100 95 1

39 Iranian recona/c 105 135 22 50 135 -1

40 Iranian recona/c 65 160 21 45 160 1
X(5), Y(5): X and y coordinates of naval units fifth waypoint. No meaning for stationary and SSM units.

“For reconnaissance aircraft, these are the x and y distances, between its current location and its x and y

destination on the first leg of a reconnaissance flight.
Loiter(S): Time naval units remain at the fifth waypoint. No meaning for stationary and SSM units. For
reconnaissance aircraft, this is the Unit# of the air base or aircraft carrier that it is attached.
X(6), Y(6): X and y coordinates of naval units sixth waypoint. No meaning for stationary and SSM
units. For reconnaissance aircraft, these are the x and y distances, between its first leg endpoint and and
its x and y destination on the second leg of a reconnaissance flight.
Loiter(6): Amount of time naval units will remain at the sixth waypoint. For stationary, SSM, and U.S.
reconnaissance aircraft units it has no meaning. For Iranian reconnaissance aircraft, this identifies the
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direction from which the aircraft will fly away from the air base during its first leg of a reconnaissance
flight.
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APPENDIX C. ALGORITHMS
1. NAVAL SHIP MOVEMENT

IS THE SHIP IN MOTION?
NO > LOITER TIME COMPLETE?
NO > EXIT algorithm
YES> Compute course & speed to next waypoint
Determine time to reach next waypoint
{Time = distance between waypoints/speed}
Place ship in motion ’
EXIT algorithm
YES> IS UNIT AT WAYPOINT?
YES> WILL SHIP LOITER AT THIS POINT?
YES> Stop ship motion
Compute time at which ship will start movement
NO>  Compute course & speed to next waypoint
Determine time to reach next waypoint
Place ship in motion
EXIT algorithm

2. MOBILE SSM LAUNCHER MOVEMENT

IS THE CURRENT WAYPOINT THE RELOAD SITE?
YES> IS THE SSM IN TRANSIT?
YES>HAS IT REACHED THE SUPPLY DEPOT THIS TIME STEP?
YES > Stop SSM motion
Replenish missile supply
Compute time at which SSM will start movement
{Time = current time + loiter time}
NO> Update SSM location ’
EXIT algorithm
NO>LOITER TIME COMPLETE?
NO > EXIT algorithm
YES> Randomly compute next Waypoint,
Compute course & speed to next waypoint
Determine time to reach next waypoint
Place SSM in motion
EXIT algorithm
NO> DOES THE LAUNCHER HAVE MISSILES?
NO > Compute course & speed to reload site
Determine time to reach reload site
Place SSM in motion
Discontinue emitting
EXIT algorithm
YES> ISIT ON THE HOUR OR HALF HOUR?
IS U(0,1) < Proowe?
NO > Use Bernoulli trial to determine if emitting
EXIT algorithm
YES>Randomly compute next waypoint
Discontinue emitting,
Compute course & speed to next waypoint
Determine time to reach next waypoint
Place SSM in motion
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. EXIT algorithm
3. RECONNAISSANCE AIRCRAFT MOVEMENT

IS THE CURRENT WAYPOINT NUMBER 1?
YES> IS THE AIRCRAFT IN TRANSIT?
NO> Compute course & speed to waypoint 1 -
Determine time to reach waypoint 1
YES> HAS THE A/C REACHED WAYPOINT 1?
YES> Compute course & speed to waypoint 2
Determine time to reach waypoint 2

GOTO next step
NO>  GOTO next step
Place aircraft in motion
Commence emitting
EXIT algorithm

NO> IS THE CURRENT WAYPOINT NUMBER 2?
YES> HAS THE AIRCRAFT REACHED THIS WAYPOINT?
YES> Compute course & speed to waypoint 3
Determine time to reach waypoint 3
GOTO next step
NO>  GOTO next step
Place aircraft in motion
EXIT algorithm

NO> IS THE CURRENT WAYPOINT NUMBER 3?
YES> HAS THE AIRCRAFT REACHED THIS WP?
YES> Update its x, y location to the CV or air base
Stop aircraft motion
Determine time at which next flight commences
EXIT algorithm :
NO> Compute course & speed to CV or air base
Determine time to reach home base
Place aircraft in motion
EXIT algorithm
NO> IS THE A/C LOITERING AT ITS HOME BASE?
YES> IS LOITER TIME COMPLETE?
YES> Compute new waypoint 1
NO> GOTO next step
Update its x, y location to CV or air base
EXIT algorithm
NO> EXIT algorithm

4. ENGAGEMENT LIST (threat determination and closest unit)

Cycle through all U.S. contacts listed on the Iranian intelligence estimate
Beg
Determine the type of U.S. unit
Cycle through all Iranian units to determine which Iranian units are threatened
by the U.S. contact, and which Iranian unit will engage the U.S. contact
Beg
Determine distance between U.S. & Iranian unit
IS DISTANCE < EFFECTIVE WEPS RANGE OF U.S. UNIT?
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End

End

YES> Classify as high threat
NO> Classify as low threat
IF UNITS ARE AIR BASE AND NAVAL SHIP?
Beg
IS DISTANCE < CURRENT MIN AIR DISTANCE?
YES> Assigned attack unit = unit
Min air distance = distance
End
IF UNITS ARE SSM AND NAVAL SHIP?
Beg
IS DISTANCE < CURRENT MIN MISSILE DISTANCE?
YES> Assigned missile unit = unit
Min missile distance = distance
End
IF UNITS ARE AIR BASE AND U.S. RECON PLANE?
Beg
IS DISTANCE < CURRENT MIN AIR DISTANCE?
YES> Assigned air unit = unit
Min air distance = distance
End
WAS A MISSILE UNIT ASSIGNED?
YES> GOTO weapon selection algorithm
NO> WAS AN AIR UNIT ASSIGNED?
YES> GOTO weapon selection algorithm
NO> GOTO beginning of algorithm
WAS A WEAPON ASSIGNED TO STRIKE THE ENEMY?
YES> Compute conflict adjudication time
NO > GOTO beginning of algorithm

Cycle through all Iranian contacts listed on the U.S. intelligence estimate

Beg

Determine the type of Iranian unit
Cycle through all U.S. units to determine which U.S. units are threatened
by the Iranian contact, and which U.S. unit will engage the Iranian contact

Beg

Determine distance between Iranian & U.S. unit
IS DISTANCE < EFFECTIVE WEPS RANGE OF IRAN UNIT?
YES> Classify as high threat
NO> IS THE IRANIAN AIR BASE OR RADAR?
YES> Classify as medium threat
NO> Classify as high threat
IF UNITS ARE CV AND LAND BASED UNIT?
Beg
IS DISTANCE < CURRENT MIN AIR DISTANCE?
YES> Assigned attack unit = unit
Min air distance = distance
End
IF UNITS ARE WARSHIP AND LAND BASED UNIT?
Beg
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IS DISTANCE < CURRENT MIN MISSILE DISTANCE?
YES> Assigned missile unit = unit
: Min missile distance = distance

End . . .

IF UNITS ARE CV AND IRANIAN RECON PLANE?
Beg
IS DISTANCE < CURRENT MIN AIR DISTANCE?

YES> Assigned air unit = unit
Min air distance = distance

End ’

GOTO weapon selection algorithm

WAS A WEAPON ASSIGNED TO STRIKE THE IRANIAN UNIT?
YES> Compute conflict adjudication time
NO > GOTO beginning of algorithm

End
End

5. IRANIAN WEAPON SELECTION AGAINST UNITED STATES UNITS

Determine the type of target
IS THE TARGET A RECONNAISSANCE AIRPLANE?
YES> Identify the air base that is closest to the target and has fighter
aircraft available and within range of the target
NO> 1. Identify the SSM site that is closest to the target and has missiles
available and within range to strike the target
2. Identify the air base that is closest to the target and has attack
aircraft available that are within range to strike the target
ARE ANY OF THE IRANIAN UNITS WITHIN THE RANGE OF ANY WEAPON
CARRIED ONBOARD THE TARGET?
YES> Classify the target as a high threat
NO> Classify the target as a low threat

IF TARGET IS A/C CARRIER?
Beg
IF CLOSEST ASSET IS AN AIR BASE
IF THREAT IS HIGH
Assign Ha attack aircraft
ELSE ‘
Assign La attack aircraft
IF CLOSEST ASSET IS SSM SITE
Launch all missiles left on launcher at A/C carrier
End
IF TARGET IS A SHIP
Beg
IF CLOSEST ASSET IS AN AIR BASE
IF THREAT IS HIGH
Assign Hs attack aircraft
ELSE
Assign Ls attack aircraft
IF CLOSEST ASSET IS AN SSM SITE
Launch Ms missiles at the ship
End
IF THE TARGET IS AN AIRPLANE
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Beg
Assign Hf fighters to engage the aircraft
End

6. UNITED STATES WEAPON SELECTION AGAINST IRANIAN UNITS

Determine the type of target
determine the friendly combat unit that is closest to the target
Classify the target as a high or low threat

IF THE TARGET IS AN AIR BASE
Beg
IF THE THREAT IS HIGH
Assign Ha attack aircraft
ELSE
Launch Ma cruise missiles at the target
End
IF THE TARGET IS A RADAR SITE
Beg
IF THE THREAT IS HIGH
Assign Hr attack aircraft
ELSE
Launch Mr cruise missiles at the target
End
IF THE TARGET IS A SSM SITE
Beg
IF THE THREAT IS HIGH
Assign Hs attack aircraft
ELSE
Launch Ms cruise missiles at the target
End
IF THE TARGET IS AN AIRPLANE
Beg
Assign Hf fighters to engage the aircraft
End

7. CONFLICT ADJUDICATION

IS IT TIME TO ADJUDICATE THE CONFLICT?
NO> exit algorithm
YES> Complete the following cycle for total number of assets fired at target
Beg. DID THE WEAPON EVADE THE TARGET’S DEFENSE
SYSTEMS?
NO> 1. Increment loss counter
2. Evaluate next asset or exit cycle
YES> Did the weapon score a hit?
YES> Increment hit counter
End
Add the number of hits during this engagement to the targets
number of hits counter
IS THE WEAPON A PLANE?
NO> Go to next step
YES> Return the number of aircraft that survived the attack to the
number of assets available from the platform it was
launched
IS THE TARGET AN AIR BASE OR AIRCRAFT CARRIER?
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NO>Go to next step
YES>Compute the number of aircraft destroyed on the
carrier or air base by the attack and remove them from the carrier
or air base available assets
HAS THE NUMBER OF HITS TO KILL THE TARGET BEEN
REACHED?
yes> 1. Remove the unit from the situation
2. Update the counter to indicate its destruction
no> Indicate that the unit is no longer targeted
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, APPENDIX D. ALGORITHM PARAMETERS
1. SENSOR DETECTION AND CONTACT LOCALIZATION
a. Probability of detection by a sensor

1. P{Surface search radar} = 0.7
2. P{Air search radar} =08
3. P{Electronic Support Measures (ESM)} =0.6

b. Accuracy of sensor (o)

1. Surface search radar: U.S. =4 mile, Iranian = 4 mile
2. Air search radar: U.S. = .5 mile, Iranian = .5 mile
3. Electronic Support Measures: U.S. = 4 miles, Iranian = 4 miles

2. INTELLIGENCE UPDATE

If a unit has been detected, but has not been detected within the last 7 minutes, the unit is considered
lost, and its position is considered unknown. 7= 30 minutes.

3. WEAPON ALLOCATION :
a. Number of assets to allocate for a strike

1. 12 Iranian attack aircraft against a High threat carrier

2. 6 Iranian attack aircraft against a Low threat carrier

3. 4 Iranian attack aircraft against a High threat U.S. warship

4. 2 Iranian attack aircraft against a Low threat U.S. warship

5. 2 Surface-to-surface missiles against a U.S. warship

6. All remaining surface-to-surface missiles against a carrier at any thrmt level
7. 1Fighter aircraft against a U.S. E-2C or reconnaissance airplane

8. 12 U.S. attack aircraft against a High threat air base

9. 4U.S. aftack aircraft against a Low threat air base

10. 6 Tomahawk missiles against a High threat air base

1i. 6 Tomahawk missiles against a Low threat air base

12. 1U.S. attack aircraft against a Medium threat Long range radar site
13. 4 Tomahawk missiles against a Medium threat Long range radar site
14. 6 U.S. attack aircraft against a Medium threat Long range radar site
15. 1 Tomahawk missile against a Medium threat Long range radar site
16. 1 attack aircraft against a SSM site at any threat level

17. 1 Tomahawk missile against a SSM site at any threat level

18. 1 U.S. fighter aircraft against a Iranian reconnaissance aircraft

b. Minimum weapons inventory (reserve on board)

. 12 U.S. attack aircraft on board a carrier
6 U.S. fighter aircraft on board a carrier
. 20 Iranian attack aircraft at an air base
8 Iranian fighter aircraft at an air base
6 Tomahawk missiles on a U.S. warship

1
2
3
4
5
¢. Speed of a weapon
1
2
3
4

. 400 mph for a Tomahawk missile

. 600 mph for a U.S. fighter aircraft

. 400 mph for a U.S. attack aircraft

. 500 mph for an Iranian surface-to-surface missile
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5. 600 mph for an Iranian fighter aircraft
6. 400 mph for an Iranian attack aircraft

4. CONFLICT ADJUDICATION
a. Probability that a weapon is defeated by the target’s defense mechanisms (Pg,s..)

P{U.S. attack aircraft against Iranian Long range radar site} = .3
P{U.S. attack aircraft against Iranian SSM site} = .1

P{U.S. attack aircraft against Iranian air base} = .3

P{U.S. fighter aircraft against Iranian reconnaissance aircraft} = .05
P{Tomahawk missile against Iranian long range radar site} = .3
P{Tomahawk missile against franian SSM site} = .2

P{Tomahawk missile against Iranian air base} = .3

P{Iranian attack aircraft against U.S. carrier} = .3

P{Iranian attack aircraft against U.S. warship} = .2

10 P{Iranian attack aircraft against U.S. merchant} = .2

11. P{Iranian fighter aircraft against U.S. E-2C or reconnaissance aircraft} = .05
12. P{Iranian surface-to-surface missile against U.S. carrier} = .1

13. P{Iranian surface-to-surface missile against U.S. warship} = .1

14. P{Iranian surface-to-surface missile against U.S. merchant} = .1

VONANU R WN -

b. Probability a weapon scores a hit against a target given the weapon evaded the defense
mechanisms of the target (Py;,)

P{U.S. attack aircraft against Iranian Long range radar site} = .7
P{U.S. attack aircraft against Iranian SSM site} = .9

P{U.S. attack aircraft against Iranian air base} = .4

P{U.S. fighter aircraft against Iranian reconnaissance aircraft} = .1
P{Tomahawk missile against Iranian long range radar site} = .7
P{Tomahawk missile against Iranian SSM site} = .7

P{Tomahawk missile against Iranian air base} = .7

P{Iranian attack aircraft against U.S. carrier} = .8

P{Iranian attack aircraft against U.S. warship} = .8

10 P{Iranian attack aircraft against U.S. merchant} = .9

11. P{Iranian fighter aircraft against U.S. E-2C or reconnaissance aircraft} = .1
12. P{Iranian surface-to-surface missile against U.S. carrier} = .9

13. P{Iranian surface-to-surface missile against U.S. warship} = .9

14. P{Iranian surface-to-surface missile against U.S. merchant} = .9

©ONAL AW

¢. Aircraft Killed on the ground at an air base or carrier as a result of an enemy strike

1. Ac{US.}=.3
2. Ac{lran} = 2
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APPENDIX E. C++ COMPUTER SIMULATION CODE

// Edward R. Martinez

// September 1996

// MSDOS 6.2

// Borland C++ 4.02 for windows
// THIS IS FILE TerTest.cpp

#include <fstream.h>
#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include “terrain.h"

main(int argc, char *argv(])
{ 4int HalfHour;

// ALLOCATE MEMORY FOR TERRAIN MAP AND THEN READ INTO DATA STRUCTURE
TerrainType myMap;
ifstream infile(argv(l]);
myMap.TerrainInput (infile);
infile.close();
myMap.Init_Units();
// OPEN FILES TO WRITE OUTPUT DATA
ofstream outfile(argv(2]);
ofstream display("Motion.dat");
ofstream losses("Loss.dat");
// VERIFY UNIT INITIAL CONDITIONS
myMap.UnitPrint (outfile);
//  SIMULATION
for (int clock = 1; clock <= 2880 ; clock++) {

// IDENTIFY HALF HOUR & OUTPUT TIME OF SIMULATION ON SCREEN

HalfHour = (clock % 30 == 0)?21:0;
1f (clock == 1) {HalfHour = 1;}
cout<<clock<<endl;

// BATTLE TIME STEP CYCLE (1 MINUTE TIME INTERVALS)

myMap .Movement (HalfHour, clock) ;
myMap.Sensors (clock, display);
myMap.UpdateView(clock);
myMap.Target (clock);
myMap.Adjudicate(clock, losses);
myMap.ReturnAircraft (clock) ;

}

// WRITE RESULTS TO OUTPUT FILE

myMap.Status(outfile, clock);
myMap.WepsStatus (outfile);

cout<<"End of Program'<<endl;
return 1;
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// Edward R. Martinez

// September 1996

// THESIS

// MSDOS 6.22

// Borland C++ 4.02 for windows
// THIS IS FILE Terrain.h

// This is the header file for the class TerrainType. This class models a
// region in the world. It utilizes class Grid
// The source file Terrain.cpp holds the code for the class.

#ifndef _ Terrain_h
#define _ _Terrain_h

#define FAILOPEN 'F'
#define READDATA 'R!

#include
#include
#include
#include
¥include
#include
#include
#include
#include

<fstream.h>
<iostream.h>
<string.h>
<stdlib.h>
<math.h>
"RANumGen.h*
"Grid.h"
"Unit.h"
"Stack.h"

class TerrainType ({

public :

TerrainType() ;

~TerrainType () ;

char TerrainInput (ifstream&);

vold Init_Units();

vold TerrainPrint (ostream&);

void UnitPrint(ostream&);

vold UnitDisplay(ostream&) ;

vold Movement (const 1int, const int);
void Sensors(const int, ostream&);
vold UpdateView(const int);

vold Target (const 1int);

void Adjudicate(const int, ostream&);
void ReturnAircraft(const int);

void Status(ostream&,int);

void WepsStatus (ostream&) ;

private :

// VARIABLES

int NumberOfGrids, NumBlue, NumRed;

GridType* TerrainMap[701];

UnitType* ForceMap[41];

RdGen *RandNumber;

stackType *BlueTarget, *RedTarget, *RetAircraft;

// PARAMETERS AND COUNTERS

double p_move,

Pd_Bat_Rradar, Pd_Bat_RSSM, Pd_Bat_Rab, Pd_Bf_Rrecon,
Pd_Bcm_Rradar, Pd_Bcm RSSM, Pd_Bcm_Rab,
Pd_Rat_Bcar, Pd_Rat_Bwar, Pd_Rat_Bmerch,
Pd_Rf_Brecon, Pd_RSSM Bcar, PdJd_RSSM Bwar, PdA_RSSM_Bmerch,
Ph_Bat_Rradar, Ph_Bat_RSSM, Ph_Bat_Rab,Ph_Bf_Rrecon,
Ph_Bcm_Rradar, Ph_Bcm _RSSM, Ph_Bcm_Rab,
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Ph_Rat_Bcar, Ph_Rat_Bwar,Ph_Rat_Bmerch,
Ph_Rf_Brecon, Ph_RSSM_Bcar, Ph_RSSM_Bwar,Ph_RSSM_Bmerch,
IRMsl,USMsl, IRB,USB;

int RHa,RLa,RHs,RLs,RMs, RHf,
BHa, BLa, BMa, BHr, BMr, BHs, BMs, BHf,
BlueCM, BlueCMLoss,BlueF, BlueA, IBlueF, IBlueA,BlueFLoss, BlueAloss,
RedF, RedA, IRedF, IRedA,RedFLoss, RedALoss,RedSSM, RedSSMLoss,
SP_Bcm, SP_Bf, SP_Bat,SP_Rcm, SP_Rf,SP_Rat,
Batac,Bfac,Ratac,Rfac,Btom,
ICarrier, IWarship, IMerchant, IBlue_Recon, IAirbase, ILong_Range_Radar,
ISSM, TRed_Recon,
ECarrier, EWarship, EMerchant, EBlue_Recon, EAirbase, ELong_Range_Radar,
ESSM, ERed_Recon;

// FUNCTIONS

int maximum(const int a, comst int b) { return a>b ? a:b ;}
int minimum(const int a, comst int b) { return a<b ? a:b ;}
double minimum(const double a, const double b) {return a<b ? a:b ;}
int Getnumber (int Number) {return ForceMap[Number]->GetNumber() ;)
float GetXcoord(int Number) {return ForceMap [Number]->GetxCoord();}
float GetYcoord(int Number) {return ForceMap [Number]->GetyCoord();}
double DetDist(const int, const int);
double DetDist(const int, const double, comst double);
void UnitInput();
int DetermineGrid(const int);
void StateGrid(int Number, int Grid) {ForceMap [Number]->SpecifyGrid(Grid);}
void SensorLook(const int, const int, comst int, comnst int,
const int,ostream&);
int BlueWepSel (const int, int&, comst int, comnst int,int&);
int RedWepSel (const int, comst int, const int, int&);
int BStrike(const int, const int, const int,comst int, const int,const double ) ;
int Fight (const double ,const double ,const int,int&);
int RStrike(const int,const int, const int,const int, const int ,const double ) ;
void UpdateCounter (const int);
vold InitCounter(const int, comst int,const int,const int);
void ACdamage (const int, const int, comst int);

}:

#endif
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// Edward R. Martinez

// September 1996

// THESIS

// MSDOS 6.22

// Borland C++ 4.02 for windows
// THIS IS FILE Terrain.cpp

// The class Terrain models the area of the World consisting of the Persian
// Gulf, Gulf of Oman and Iran. It utilizes class GridType to hold individual
// square miles of area.

#include <fstream.h>
#include <iostream.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "Terrain.h*
#include "RANumGen.h®"
#include "Grid.h"
#include "unit.h"

// CONSTRUCTOR
TerrainType: :TerrainType () {
NumberOfGrids = NumBlue = NumRed = 0;
BlueTarget = new stackType();
RedTarget = new stackType();
RetAircraft = new stackType();
RandNumber = new RdGen/();
// DEFINE CONSTANT VARIABLES
b_move = 0.8; // Probability a mobile SSM launcher will move every 1/2 hr

// Number of Assets to use in an attack

RHa = 12; // Red attack aircraft against High threat CV

RLa = 6; // Red attack aircraft against Low threat CV

RHs = 4; // Red attack aircraft against Hight threat warship
RLs = 2;

RMs = 2; // Red SSM against U. S. targets

RHf = 1;

BHa = 6; // Blue attack aircraft against high threat air base
BLa = 4; // low threat air base
BMa = 6; // Blue cruise missile against air base

BHr = 1; // Blue cruise missile against high threat radar site
BMr = 1; // against medium threat radar site
BHs = 1; //

BMs = 1; //

BHf = 1; // Blue fighter against Red recon plane

// MINIMIM PERMISSIABLE LEVELS TO STRIKE

Batac = 12;
Bfac = 10;
Ratac = 20;
Rfac = 8;
Btom = 6;

// AIRCRAFT DAMAGED DURING A STRIKE ON CV OR AIR BASE

IRMsl = .01;
USMsl = .02;
IRB = .02;
USB = .02;

// COUNTER TO KEEP TRACK OF TOTAL FORCE WEAPONS USED/LOST
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BlueCM
BlueF
Bluea
IBlueF
IBlueA
BlueCMLoss
BlueFLoss
BlueALoss
RedF

RedaA

IRedF
IRedA
RedSSMLoss
RedFLoss
RedALoss
RedsSsM
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// COUNTER TO KEEP TRACK OF UNITS LOST

ICarrier 0;
IWarship 0;
IMerchant = 0;
IBlue_Recon =
JAirbase = 0;
ILong_Range_Radar
ISSM = 0;
IRed_Recon = 0;

0;

]
o
~

ECarrier ;
EWarship ;
EMerchant = 0;
EBlue_Recon =
EAirbase = 0;.
ELong_Range_Radar
ESSM = 0;
ERed_Recon = 0;

1]
(@]
~

SP_Bcm = 400;
SP_Bf = 600;
SP_Bat = 400;
SP_Rcm = 500;
SP_Rf = 600,‘
SP_Rat = 400;

// PROBABILITY A STRIKE WEAPON IS DEFEATED BY TARGET

Pd_Bat_Rradar
Pd_Bat_RSSM
Pd_Bat_Rab
Pd_Bf_Rrecon
Pd_Bcm_Rradar
Pd_Bcm_RSSM
Pd_Bcm_Rab
Pd_Rat_Bcar
Pd_Rat_Bwar
Pd_Rat_Bmerch
PA_Rf_Brecon
PJd_RSSM_Bcar
Pd_RSSM_Bwar
Pd_RSSM_BEmerch

.

]
~e
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DEFENSIVE MECHANISMS

// PROBABILTY A STRIKE WEAPON SCORES A DIRECT HIT AGAINST TARGET AFTER IT

// AVOIDED DEFENSE MECHANISMS
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}
//

Ph_Bat_Rradar
Ph_Bat_RSSM
Ph_Bat_Rab
Ph_Bf_Rrecon
Ph_Bcm_Rradar
Ph_Becm_RSSM
Ph_Bcm_Rab
Ph_Rat_Bcar
Ph_Rat_Bwar
Ph_Rat_Bmerch
Ph_Rf_Brecon
Ph_RSSM_Bcar
Ph_RSSM_Bwar
Ph_RSSM_Bmerch
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for (int i = 0; i<= 700; i++) {
TerrainMap([i] = new GridType();

}

for (int j = 0; j<= 40; j++) (
ForceMap[j] = new UnitType();

DESTRUCTOR

TerrainType: : ~TerrainType () {

}
s

NumberO£fGrids = 0;
delete BlueTarget;
delete RedTarget;
delete RetAircraft;
delete RandNumber;

for (int i = 0; i<= 700; i++) {
delete TerrainMap(i];

}

for (int j = 0; Jj<= 40; j++) {
delete ForceMap[jl;

}

INPUT THE TERRAIN AND INITIAL UNIT DATA BASES

char TerrainType::TerrainInput (ifstream& inputfile) {

//

’/

s
s

DEFINE VARTIABLES

char *data, LineofData[160];
int Xl,x2,y1,y2,t,w,U,H,T,M,B,MS,MR,MSR,BR,SRR,ARR,ESMR,XPO,YPO,XPl,YPl;
int LPl,XP2,YPZ,LPZ,XPB,YP3,LP3,XP4,YP4,LP4,XP5,YP5,LP5,XPG,YPG,LPG;

READ IN NUMBER OF GRIDS FOR THE TERRAIN AND NUMBER OF UNITS FOR EACH FORCE

inputfile.getline(LineofData,160,'\n"');
data = strtok(LineofData,",");
NumberOfGrids = atoi(data);

data = strtok(NULL,",*);

NumBlue = atoi(data);

data = strtok(NULL,",");

NumRed = atoi(data);

READ IN X AND Y COORDINATES OF FOUR CORNERS OF TERRAIN GRID AND STORE AS
A TERRAIN MAP

for (int counter = 1; counter <= NumberOfGrids; counter++) {
inputfile.getline(LineofData,160,'\n"');
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data = strtok(LineofData,",");

x1 = atoi(data);

data = strtok(NULL,",");

x2 = atoi(data);

data = strtok(NULL,",");

vl = atoi(data);
data = strtok(NULL,
y2 = atoi(data);
data = strtok (NULL,
t = atoi(data);
data = strtok (NULL,
w = atoi(data);

)i

STORE AN INDIVIDUAL GRID

TerrainMap[counter]->SetGridPoints (x1,x2,v1,y2,t,w):;

// READ IN THE UNIT INITIAL FORCE STRUCTURE AND STORE AS A UNIT MAP

for (counter = 1;

counter <=

(NumBlue + NumRed); counter++) (

inputfile.getline(LineofData, 160, '\n"');
data = strtok(LineofData,",®);

U = atoi(data);

data = strtok (NULL,",");

H = atoi(data);
data = strtok (NULL,
T = atoi(data);
data = strtok (NULL,
MS = atoi(data);
data = strtok (NULL,
MR = atoi(data);
data = strtok(NULL,
M = atoi(data);
data = strtok (NULL,
MSR = atoi(data);
data = strtok (NULL,
B = atoi(data);
data = strtok(NULL,
BR = atoi(data);
data = strtok(NULL,
SRR = atoi(data);
data = strtok(NULL,
ARR = atoi(data);

data = strtok (NULL,
ESMR = atoil(data);
data = strtok(NULL,

XPO = atoi(data);
data = strtok (NULL,
YPO = atoi(data);
data = strtok (NULL,
XP1l = atoi(data);
data = strtok (NULL,
YP1 = atoi(data);
data = strtok (NULL,
LPl = atoi(data);
data = strtok(NULL,
XP2 = atoi(data);
data = strtok (NULL,
YP2 = atoi(data);
data = strtok(NULL,
LP2 = atoi(data);
data = strtok (NULL,
XP3 = atoi(data);
data = strtok (NULL,

PN
M)
)i
)i

")
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YP3 = atoi(data);

data = strtok(NULL,",");
LP3 = atoi(data);

data = strtok(NULL,",");
XP4 = atoi(data);

data = strtok(NULL,",");
YP4 = atoi(data); _
data = strtok(NULL,",");
LP4 = adtoi(data);

data = strtok(NULL,",");
XP5 = atoi(data);

data = strtok(NULL,",");
YP5 = atoi (data);

data = strtok(NULL,",");
LP5 = atoi(data);

data = strtok(NULL,*,");
XP6 = atoi(data);
data = strtok (NULL,
YP6 = atoi(data);
data = strtok(NULL,",");
LP6 = atoi(data);
InitCounter(T,H,M,B);

~
.

// STORE AN INDIVIDUAL UNIT IN THE UNIT MAP

ForceMap[counter]->SetUnit (U, H, T, SRR, ARR, ESMR, M, B, LP1,LP2,LP3,LP4,LP5,LP6,
Ms,MR,MSR, BR, XPO,YPO,XP1,YP1,XP2,YP2,XP3,YP3,XP4,YP4,XP5,YP5,XP6,YP6) ;
}
return READDATA;
}

// READ IN INITIAL UNIT LOCATIONS TO THE GRID MAP

void TerrainType::Init_Units() {
int Gridnumber;
for (int i = 1;i<=(NumBlue + NumRed);i++) {
1f (ForceMapl[i]->GetType() != -1) {
Gridnumber = DetermineGrid(i);
TerrainMap[Gridnumber]->AddUnit (i, 1, ForceMap[i]->GetType(),
ForceMap{i]->GetxCoord(),ForceMap[i]->GetyCoord());
ForceMap[i]->SpecifyGrid(Gridnumber) ;

}
// OUTPUT TerrainMap TO AN OUTPUT FILE

void TerrainType::TerrainPrint (ostream& method) {
for(int i = 1; i <= NumberOfGrids; i++) {
1f (TerrainMap[i]->AnyUnits()) {
method<<"[*<<i<<®] *;
TerrainMap[i]->GridPrint (method);
method<<endl;

}
// OUTPUT UnitMap TO AN OUTPUT FILE

void TerrainType::UnitPrint(ostream &method) {
for (int i = 1; i <= 40; i++) {ForceMap[i]->PrintUnit (method);}

3
// PRINT OUT X AND Y COORDINATES OF ALL UNITS TO AN OUTPUT FILE

vold TerrainType::UnitDisplay(ostream &method) {
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for (iﬁt i=1; i <= 40; i++) (
ForceMap{i]->PrintLoc (method);

}

}
// PERFORM MOVEMENT UPDATE STEP FOR ALL UNITS THAT ARE FUNCTIONING

volid TerrainType::Movement (const int Flag, comst int TheTime) {
int Update = 0, NewGrid, Unit,direct,AB;
double c¢s;

for (int i = 1; i<(NumBlue + NumRed + 1); i++) {
Unit = ForceMapl[i]->GetType();
if (Unit > 0) {
if (Unit < 11 || Unit == 19) {Update = ForceMap[i]->MoveShip(TheTime) ;}
else 1f (Unit < 20) {

AB = ForceMap[i]->GetLP5();
cs = ForceMap[AB]->GetCourse();
cs = (cs > 0)?¢cs:-cs;

direct = (¢s >1.57)72-1:1;
Update = ForceMap[i]->MoveAir (TheTime, ForceMap[AB]->GetxCoord(),
ForceMap [AB] ->GetyCoord() ,direct,-1,0);
} .
else 1f (Unit == 24) {
Update = ForceMap[i]->MoveSSM(TheTime, Flag,p_move);
if (Update == 1) {
NewGrid = DetermineGrid(i);
1f (TerrainMap [NewGrid]->GetType() == 1) (
ForceMap[i]->ChangeSSM();
}
}

}
elgse 1f (Unit > 30) ¢
direct = ForceMap[i]->GetLP6();
AB = ForceMap[i]->GetLP5();
Update = ForceMap[i]->MoveAir (TheTime, ForceMap[AB]->GetxCoord(), .
ForceMap[AB] ->GetyCooxrd() ,direct,1,1);
}
else {Update = 0;}

if (Update == 1) ({ForceMap[i]->UpdateMotion(.01667);}

if (Update > 0) {
NewGrid = DetermineGrid(i);
TerrainMap[ForceMap[i]->CGetGrid () ]->RemoveUnit (i) ;
TerrainMap [NewGrid]->AddUnit (i, ForceMap[i]->GetEMCON(),
ForceMap[i]~>GetType (), ForceMap[i]->GetxCoord(),
ForceMap[i]->GetyCoord()); )
if (NewGrid != ForceMap[i]->GetGrid()) {

ForceMap[i]->SpecifyGrid(NewGrid) ;

}

}
// LOOK AT THE WORLD WITH EACH OF THREE TYPES OF SENSORS

volid TerrainType::Sensors(const int TheTime, ostream &method) (
int Gridnumber;
int p = 1;
method<<endl<<"Time = "<<TheTime<<endl;

// ALLOW EACH BLUE UNIT TO USE HIS THREE SENSORS TO LOOK FOR THE ENEMY

for (p = 1; p < (NumBlue + 1); p++) {
method<<p<<" *;
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1f (ForceMap[p]l->GetType() > 0) {
Gridnumber = ForceMap[p]->GetGrid();
method<<Gridnumber<<" ";
SensorLook (Gridnumber, 0, ForceMap[p]->GetSRR(), TheTime, 1, method) ;
method<<"Surf *;
SensorLook (Gridnumber, 0, ForceMap [p] ->GetARR() , TheTime, 2, method) ;
method<<"Air *;
SensorLook (Gridnumber, 0, ForceMap[p] ->GetESMR () , TheTime, 3, method) ;
method<<"ESM "<<endl; '

// ALLOW EACH RED UNIT TO USE HIS THREE SENSORS TO LOOK FOR THE ENEMY

for (p = (NumBlue + 1); p < (NumBlue + NumRed + 1); p++) {

}

i1f (ForceMap[pl->GetType() > 0) {
method<<p<<" *;
Gridnumber = ForceMap([p]->GetGrid();
method<<Gridnumber<<" ";
SensorLook {(Gridnumber, 1, ForceMap[p]->GetSRR(), TheTime, 1, method);
method<<"Surf *;
SensorLook (Gridnumber, 1, ForceMap[p]->GetARR(), TheTime, 2, method) ;
method<<"Air ";
SensorLook (Gridnumber, 1, ForceMap[p]->GetESMR (), TheTime, 3,method) ;
method<<"ESM "<<endl;

// SEARCH FOR TARGETS WITH ALL A SENSOR

vold TerrainType::SensorLook(const int GridNum, const int BlueRed,
const int sensor_range,const int Timer, const int SensType, ostream &method) {
int row = 0;
int col = 0;

if (sensor_range == 0) {
method<<"sr = "<<sensor_range;
if (SensType == 1) {TerrainMap [GridNum] ->LookSurf (BlueRed, Timer,method) ; }
else 1f (SensType == 2) {TerrainMap[GridNum]->LookAir (BlueRed, Timer,method) ;}
else 1f (SensType == 3) {TerrainMap|[GridNum]->LookESM(BlueRed, Timer,method);}
}
else {
method<<"srm = "<<sensor_range;

row = GridNum/35;

col = GridNum - row*35;

if (col == 0) {row--; col = 35;}

int col_low = maximum(l,col-sensor_range);
int col_high = minimum(35, col+sensor_range);
int row_low = maximum(0, row-sensor_range) ;
int row_high minimum(19, row+sensor_range) ;
int deltacol col_high - col_low;

int deltarow row_high - row_low;

int start_point = 35*row_low + col_low;

for (Int r = 0; r <= deltarow; r++) {

for (int ¢ = 0; c <= deltacol; c++) {
i1f (SensType == 1)
{TerrainMap[ (start_point+35*r + c¢)]->LookSurf (BlueRed, Timer,method) ;)
else 1f (SensType == 2)

{TerrainMap/ (start_point+35*r + c¢)]->LookAir(BlueRed, Timer,method);}
else If (SensType == 3)
{TerrainMap| (start_point+35*r + c)]->LookESM(BlueRed, Timer,method);}
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// ACCOUNT FOR LOST CONTACT

vold TerrainType:

:UpdateView(const int TheTime)

for (int counter = 1; counter <= NumberOfGrids; counter++) {
TerrainMap [counter]->UpdateMap (TheTine) ;

}
}

// DEVELOP TARGET LIST

vold TerrainType:

:Target (const int TheTime) {

int UN, UTfr, UTtg,AU, AUat, AUms,WepType,Threat,Time,Conf=0,NumAssets;
double MinDistat, MinDistms, TheDist, Xunit, Yunit, AimptError;

//method<<endl;
for (int i = 1;

i<= NumberOfGrids;i++) (

TerrainMap[i]l->InitQueue();
while (TerrainMap[i]->LookAtView(UN, 0,Xunit,Yunit,Conf)) {
// method<<"BLUE[Time = "<<TheTime<<" ] Grid = "<<i<<" Unit = "<<UN<<endl;

UTtg

ForceMap [UN] ~->GetType () ;

if (ForceMap[UN]->GetTarget () == 0 && UTtg > 0) {
Threat = 0; MinDistat = 807; MinDistms = 807; AUat = 0; AUms = 0;

for

}

(int j = 1; j<= NumBlue; j++) {
UTfr = ForceMap[j]->GetType();
TheDist = DetDist(j,Xunit,Yunit);

// THREAT DETERMINATION
if (UTfr > 0 && UTfr < 10) {

if (TheDist<ForceMap[UN]->GetMR()) {Threat = 1;}
}
if (UTtg == 22) {Threat

}
1f ( Threat != 1 && UTtg = )

= 4 {Threat = 2;}
// DETERMINE CLOSEST UNITS THAT HAVE WEAPONS TO SHOOT
if (UTfr == 1 && UTtg < 30 && ForceMap[jl- >GetNumMS()>Batac
&& ForceMap[j]l->GetMR() >= TheDist) (
AUat = (MinDistat > TheDist) ?j:AUat;

MinDistat = minimum(MinDistat, TheDist);

1f (UTfr == 2 && UTtg < 30 && ForceMap[j]->GetNumMS ()>Btom
&& ForceMap[j]->GetMR() >= TheDist) (

AUms = (MinDistms > TheDist) ?j:AUms;

MinDistms = minimum(MinDistms, TheDist);

1f (UTfr == 1 && UTtg > 30 && ForceMap[j]->GetNumB() > Bfac
&& ForceMap[j]->GetBR() >= TheDist)

AUat = (MinDistat > TheDist)?j:AUat;

MinDistat = minimum(MinDistat, TheDist);

// SELECT WEAPON
WepType = BlueWepSel (UN, AUat,AUms, Threat, NumAssets) ;

// IF A WEAPON HAS BEEN SELECTED, COMPUTE IMPACT TIME, AIMPOINT
// ERROR AND PLACE ON THE TARGET LIST

if

(WepType > 0) {
if (WepType <= 3) {Time = TheTime +
floor (RandNumber->Norm(10,2) + (60*DetDist (UN,1) /SP_Bcm)) ; }
if (WepType == 4) {Time = TheTime +
floor (RandNumber->Norm(5,1) + (60*DetDist(UN,1)/SP_Bf));}
if (WepType >= 5) {Time = TheTime +
floor(60*DetDist (UN,1) /SP_Bat);}

AimptError = DetDist (UN,Xunit,Yunit);
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AimptError = (AimptError <= 10)?exp(-AimptError/10.0):0.2;
BlueTarget~>PUSH (Time, UN, AUat , WepType, NumAssets, AimptError,1.0);
// method<<" "<<AUat<<" Shot "<<NumAssets<<" of type "<<WepType
// <<" will arrive at "<<Time<<endl;
ForceMap [UN]->SetTarget (1) ;
}

}

while (TerrainMap[i]->LookAtView(UN,1,Xunit,Yunit,Conf)) (°*

// method<<"RED[Time = "<<TheTime<<" ] Grid = "<<i<<" Unit = "<<UN<<endl;
UTtg = ForceMap[UN]->GetTypel();
if (ForceMap[UN]->GetTarget() == 0 && UTtg > 0) {
Threat = 0; MinDistat = 807; MinDistms = 807; AUat = 0; AUms = 0;
AU = 0;

for (int j = (NumBlue + 1); i<= (NumBlue + NumRed); j++) {
UTfr = ForceMap[jl->GetTypel();
TheDist = DetDist(j,Xunit,Yunit);

// THREAT DETERMINATION
if (UTfr > 0 && UTfr < 30) ¢
1f (TheDist <= ForceMap[UN]->GetMR()) ({Threat = 1;}

3

// DETERMINE CLOSEST UNITS THAT HAVE WEAPONS TO SHOOT
if (UTfr == 21 && UTtg <10 && ForceMap[j]->GetNumMS()>Ratac
&& ForceMap([jl]l->GetMR() >= TheDist) {
AUat = (MinDistat > TheDist)?j:AUat;
MinDistat = minimum(MinDistat,TheDist);
}
if (UTfr == 24 && UTtg < 10 && ForceMap[jl->GetNumMS()> 0
&& ForceMap[j]->GetMR() >= TheDist) {
AUms = (MinDistms > TheDist)?j:AUms;
MinDistms = minimum(MinDistms, TheDist);
3
if (UTfr == 21 && UTtg > 10 && ForceMap[j]->GetNumB()> Rfac
&& ForceMap[jl->GetBR() >= TheDist) {
AUat = (MinDistat > TheDist) ?j:AUat;
MinDistat = minimum(MinDistat, TheDist);

}

// SELECT WEAPON
if (AUms > 0)
{AU = AUms;WepType
else 1f (AUat > 0)
{AU = AUat;WepType = RedWepSel (UN, AUat, Threat,NumAssets) ;)

else {WepType = 0;}

RedWepSel (UN, AUnms, Threat, NumAssets); }

// IF A WEAPON HAS BEEN SELECTED, COMPUTE IMPACT TIME, AIMPOINT
// ERROR AND PLACE ON THE TARGET LIST
1f (WepType > 0) {
i1f (WepType <= 13) {Time = TheTime +
floor (RandNumber->Norm(5,1)+(60*DetDist (UN, 1) /SP_Rcm) ) ; }

1f (WepType == 14) {Time = TheTime +
/ floor (60*DetDist (UN, 1) /SP_RE);}
if (WepType >= 15) {Time = TheTime +

floor (RandNumber->Norm(10,2)+ (60*DetDist(UN,1)/SP_Rat));}
AimptError = DetDist (UN,Xunit,Yunit);

AimptError = (AimptError <= 10)?exp(-AimptError/10.0):0.2;

RedTarget->PUSH(Time, UN, AU, WepType, NumAssets, AimptError,1.0);
// method<<" "<<AU<<" Shot "<<NumAssets<<" a "<<WepType
// <<" will arrive at "<<Time<<endl;

ForceMap [UN]->SetTarget (1) ;
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// SELECT A WEAPON TO ATTACK THE RED FORCES

int TerrainType::BlueWepSel( const int UN, int &AUatt, comst int AUmsl,

const int TH, int &assets) (

int TheType = ForceMap[UN]->GetType();

// HIGH

PRIORITY THREAT

if (TH == 1) {
1f (AUatt > 0 && TheType == 21) {
assets = BHa < ForceMap[AUatt]->GetNumMS () ?BHa:BLa;

if

(assets != BHa) {

assets = BlLa < ForceMap[AUatt]->GetNumMS () ?BLa:ForceMap [AUatt]->GetNumMS() ;}

}

BlueA = BlueA + assets;
ForceMap [AUatt]->UseMS (assets) ;
return 5;

else 1f (AUmsl > 0 && TheType == 21) {

assets

= BMa < ForceMap[AUmsl]->GetNumMS () ?BMa:ForceMap [AUmsl]- >GetNumMS(),

BlueCM = BlueCM + assets;
ForceMap [AUmsl]->UseMS (assets) ;jAUatt = AUmsl;

ret

}

urn 1;

else if (AUatt > 0 && TheType == 22) {

assets =

6 < ForceMap[AUatt]->GetNumMS()?4:ForceMap[AUatt]->GetNumMS () ;

BlueA = BlueA + assets;
ForceMap[AUatt]->UseMS (assets);
return 6;

}

else 1f (AUmsl > 0 && TheType == 22) {

assets =

6 < ForceMap[AUmsl]->GetNumMS () ?6:ForceMap[AUms]l]->GetNumMS () ;

BlueCM = BlueCM + assets;
ForceMap[AUmsl]->UseMS (assets);
AUatt = AUmsl;

return 6;

}

else 1

f (AUatt > 0 && TheType == 24) {

assets = BHs < ForceMap[AUatt]->GetNumMS () ?BHs : ForceMap [AUatt]->GetNumMS () ;

}
else 1
assets

BlueA = BlueA + assets;
ForceMap[AUatt]->UseMS (assets);
return 7;

£f (AUmsl > 0 && TheType == 24) {
= BMs < ForceMap[AUmsl]->GetNumMS () ?BMs : ForceMap [AUms1 ] ->GetNumMS () ;

BlueCM = BlueCM + assets;
ForceMap [AUmsl]->UseMS (assets) ;
AUatt = AUmsl;

return 2;

)
else return O0;
}
if (TH == ) {
if (AUatt > 0 && TheType == 21) ¢
assets = BLa < ForceMap[AUatt]->GetNumMS () ?BLa:0;
1f (assets > 0) {

}
}

BlueA = BlueA + assets; ForceMap[AUatt]->UseMS(assets); return 5;

if (AUmsl > 0 && TheType == 21) {

ass

ets = BMa < ForceMap[AUmsl]->GetNumMS() ?BMa:0;
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1f (assets > 0) {
BlueCM = BlueCM + assets;
ForceMap[AUmsl]->UseMS (assets) ;
AUatt = AUmsl;
return 1;

}

else {return 0;}

if (AUatt > 0 && TheType == 24) {
assets = BHs < ForceMap[AUatt]->GetNumMS () ?BHs:0;
if (assets > 0) {
BlueA = BlueA + assets; ForceMap[AUatt]->UseMS (assets); return 7

~

}

1f (AUmsl > 0 && TheType == 24) {
assets = BMs < ForceMap[AUmsl]->GetNumMS()?BMs:0;
if (assets > 0) {
BlueCM = BlueCM + assets;
ForceMap [AUmsl]->UseMS(assets) ;
AUatt = AUmsl;
return 2;
}

else {return O0;}

if (AUatt > 0 && TheType == 22) {
assets = BHr < ForceMap[AUatt]->GetNumMS () ?BHr:0;
1f (assets > 0) {
BlueA = BlueA + assets; ForceMap[AUatt]->UseMS(assets); return 6;

}

if (AUmsl > 0 && TheType == 24) {
assets = BMr < ForceMap[AUmsl]->GetNumMS () ?BMr:0;
if (assets > 0) {
BlueCM = BlueCM + assets;
ForceMap [AUmsl]->UseMS (assets) ;
AUatt = AUmsl; '
return 2;

}

else {return 0;)}

}

return 0;

if (AUatt > 0 && TheType == 33) {
assets = BHf < ForceMap[AUatt]->GetNumB () ?BHf:0;-
if (assets > 0) {
BlueF = BlueF + assets; ForceMap[AUatt]->UseB(assets); return 4;
}
else {return 0;}
}

return 0;

}
// SELECT A WEAPON TO ATTACK THE BLUE FORCES

int TerrainType: :RedWepSel (const int UN,const int AU,const int TH,int &assets) {

int TheType = ForceMap|[UN]->GetType();
int AvailAssets = ForceMap[AU]->GetNumMS () ;

if (TheType == 1 && ForceMap[AU]->GetType() == 21) {
if (TH == 1) {assets = RHa < AvailAssets?RHa:AvailAssets;
RedA = RedA + assets; ForceMap[AU]->UseMS(assets); return 15;}
else {assets = RLa < AvailAssets?RLa:AvailAssets;
RedA = RedA + assets;ForceMap[AU]->UseMS(assets); return 15;}
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}

if (TheType == 1 && ForceMap[AU]->GetType() == 24) {
assets = AvailAssets;
ForceMap [AU] ->UseMS (assets) ;
RedSSM = RedSSM + assets;
return 11;

}

if (TheType == 2 && ForceMap[AU]->GetType() == 21) {
1f (TH == 1) {assets = RHs < AvailAssets?RHs:AvailAssets;
RedA = RedA + assets; ForceMap[AU]->UseMS (assets); return 16;)}
else {assets = RLs < AvailAssets?RLs:AvailAssets;
RedA = RedA + assets;ForceMap[AU]->UseMS(assets); return 16;}
}

if (TheType == 2 && ForceMap[AU]->GetType() == 24) {
assets = RMs < Avai]lAssets?RMs:Availlssets;
ForceMap [AU] ->UseMS (asaets) ;
RedSSM = RedSSM + RMs;
return 12;

}

if (TheType == 3 && ForceMap[AU]->GetType() == 21) {

assets = RLs < AvailAssets?RLs:AvailAssets;

RedA = RedA + assets;ForceMap[AU]->UseMS(assets); return 17;
}

if (TheType == 3 && ForceMap[AU]->GetType() == 24) {
assets = RMs < AvailAssets?RMs:AvailAssets;
ForceMap[AU] ->UseMS (assets) ;
RedSSM = RedSSM + assets;
return 13;

}

if (ForceMap[AU]->GetType() == 21 && (TheType == 12 || TheType == 13)) {
assets = RHf < ForceMap[AU]->GetNumB () ?RHf:ForceMap [AU]->GetNumB () ;
ForceMap[AU]->UseB(assets);
RedF = RedF + assets;
return 14;

}

return 0;

// ADJUDICATE ANY CONFLICTS

void TerrainType::Adjudicate(const int TheClock,ostream &method) ¢

int UN, WepType,Time,Assigned_Unit,NumAssets;
double AimptErr, dummy, Hits_On_Target;

int Blue = BlueTarget->stackSize();

int Red = RedTarget->stackSize();

for (int i = 1; i<= Blue; i++) {
BlueTarget->POP(Time, UN, Assigned_Unit,WepType, NumAssets, AimptErr, dummy) ;
1f (Time > TheClock) {
BlueTarget->PUSH(Time,UN, Assigned_Unit,WepType, NumAssets, AimptErr, dummy) ;
}
else {
Hits_On_Target = BStrike(TheClock,WepType,UN,NumAssets,Assigned_Unit,AimptErr);
ForceMap [UN]->Attack (Hits_On_Target) ;
if (WepType == 1) {ACdamage(UN,Hits_On_Target,1);}
if (WepType == 5) {(ACdamage (UN,Hits_On_Target,2);)}

if (WepType == 4) (ERed_Recon++;}

if (ForceMap[UN]->Dead() == 1) {
UpdateCounter (ForceMap [UN] ->GetType()) ;
ForceMap [UN] ->SetType (-1) ;
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method<<TheClock<<" "<<UN<<endl;
}
if (ForceMap[UN]->Dead() == 0) {ForceMap[UN]->SetTarget(0);)}
} .
for (i = 1; i<= Red; i++) (

RedTarget->POP{Time, UN,Assigned_Unit,WepType, NumAssets, AimptErr, dumy) ;
1f (Time > TheClock) {
RedTarget->PUSH(Time,UN,Assigned_Unit,WepType, NumAssets,AimptErr, dummy) ;
}
else {
Hits_On Target =
ForceMap [UN]->Attack(Hits_On_Target) ;
if (WepType == 11) {ACdamage (UN,Hits_On_Target,1);}
i1f (WepType == 15) {ACdamage (UN,Hits_On_Target,2);)

1f (WepType == 14) {EBlue_Recon++; }

if (ForceMap[UN]->Dead() == 1) {
UpdateCounter (ForceMap [UN]->GetType());
ForceMap|[UN]->SetType(~-1);
method<<TheClock<<" “<<UN<<endl<<endl;

if (ForceMap[UN]->Dead() == 0) {ForceMap[UN]->SetTarget:(0);}

// DETERMINE ASSETS LOST AND HITS RECORDED FOR A BLUE ATTACK AGAINST RED

int TerrainType::BStrike(const int PresTime,const int WT,
t int AU, const double Err) {

int RetTime,Strikes = 0;

int Lost = 0;

if (WT == 1) (
1f (ForceMap[UN]->GetType() > 0) {
Strikes = Fight (Ph_Bcm_Rab*Err, Pd_Bcm_Rab,NA, Lost) ;
BlueCMLoss = BlueCMLoss + Lost;
}

return Strikes;

1f (WT == 2) {
1f (ForceMap[UN]->GetType() > 0) {
Strikes =Fight(Ph_Bcm Rradar*Err, Pd_Bcm_Rradar,NA, Lost),
BlueCMLoss = BlueCMLoss + Lost;
}

return Strikes;

1f (WD == 3) {
1f (ForceMap[UN]->GetType() > 0) {
Strikes =Fight (Ph_Bcm_ RSSM*Err, Pd_Bcm RSSM,NA,Lost);
BlueCMLoss = BlueCMLoss + Lost;
}

return Strikes;

1f (WT == 4) {
if (ForceMap[UN]->GetType() > 0) {
Strikes = Fight(Ph_Rf_ Rrecon*Err,Pd_Bf_Rrecon,NA,Lost);
BlueFLoss = BlueFLoss + Lost;
}
RetTime = PresTime + floor (RandNumber->Norm(90,30)
RetAircraft->PUSH (RetTime,AU,UN, 2,NA-Lost,1.0,1.0);

return (Strikes > 0)21:0;
}
if (WT == 5) {
if (ForceMap[UN]->GetType() > 0) (
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Strikes = Fight (Ph_Bat_Rab*Err,Pd_Bat_Rab,NA,Lost);
BlueALoss = BlueALoss + Lost;
)
RetTime = PresTime + floor(RandNumber->Norm(90,30) + (60*DetDist (UN,AU)/SP_Bf));
RetAircraft->PUSH(RetTime,AU,UN,1,NA-Lost,1.0,1.0);
return Strikes;

if (WT == 6) {
if (ForceMap[UN]->GetType() > 0) {
Strikes = Fight (Ph_Bat_Rradar*Err, Pd_Bat_Rradar,NA, Lost);
BlueAlLoss = BlueAlLoss + Lost;
}
RetTime = PresTime + floor(RandNumber->Norm(90,30) + (60*DetDist (UN,AU)/SP_RBf));
RetAircraft->PUSH(RetTime,AU,UN,1,NA~-Lost,1.0,1.0);
return Strikes;
}
if (WT == 7) {
if (ForceMap[UN]->GetType() > 0) {
Strikes = Fight (Ph_Bat_RSSM*Err, Pd_Bat_RSSM,NA,Lost);
BlueALoss = BlueAlLoss + Lost;
}
RetTime = PresTime + floor(RandNumber->Norm(90,30) + (60*DetDist (UN,AU)/SP_Bf));
RetAircraft->PUSH(RetTime,AU,UN,1,NA-Lost,1.0,1.0);
return Strikes;
}
return O;

)

// DETERMINE ASSETS LOST AND HITS RECORDED FOR A RED ATTACK AGAINST BLUE

int TerrainType::RStrike(const int PresTime,const int WT, comst int UN, const int NA, con

st int AU,const double Err) {
int Strikes= 0;
int RetTime,Lost = 0;

if

(W == 11)

1f (ForceMap[UN]->GetType() > 0) (
Strikes = Fight (Ph_RSSM Bcar*Err, Pd_RSSM_Bcar,NA,Lost);
RedSSMLoss = RedSSMLoss + Lost;

}

return Strikes;

(WD == 12) {

if (ForceMap[UN]->GetType() > 0) {
Strikes =Fight (Ph_RSSM Bwar*Err, Pd_RSSM_Bwar,NA,Lost);
RedSSMLoss = RedSSMLoss + Lost;

}

return Strikes;

(WP == 13) {
if (ForceMap[UN]->GetType() > 0) {
Strikes =Fight (Ph_RSSM Bmerch*Err, Pd_RSSM_Bmerch,NA,Lost) ;
, RedSSMLoss = RedSSMLoss + Lost;
}
return Strikes;
(WT == 14) ({
if (ForceMap[UN]->GetType() > 0) {
Strikes = Fight (Ph_Rf_Brecon*Err, Pd_Rf_Brecon,NA,Lost);
RedFLoss = RedFLoss + Lost;
3
RetTime = PresTime + floor(RandNumber->Norm(90,30) + (60*DetDist (UN,AU)/SP_Bf));
RetAircraft—>PUSH(RetTime,AU,UN,2,NA—Lost,1.0,1.0);
return (Strikes > 0)°?1:0;

(WT == 15) ¢
if (ForceMap[UN]->GetType() > 0) {
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Strikes = Fight (Ph_Rat_Bcar*Err,Pd_Rat_Bcar,NA,Lost);
RedALoss = RedALoss + Lost;

}
RetTime = PresTime + floor{(RandNumber->Norm(90,30) + (60*DetDist(UN,AU)/SP_Bf));

RetAircraft->PUSH(RetTime, AU,UN,1,NA-Lost,1.0,1.0);
| return Strikes;

1f (WD == 16) {
if (ForceMap|[UN]->GetType() > 0) {
Strikes = Fight (Ph_Rat_Bwar*Err, Pd_Rat_Bwar,NA, Lost);
RedALoss = RedALoss + Lost;

}
RetTime = PresTime + floor (RandNumber->Norm(90,30) + (60*DetDist (UN,AU)/SP_Bf));

RetAircraft->PUSH(RetTime,AU,UN,1,NA-Lost,1.0,1.0);
return Strikes;

1f (WP == 17) {
if (ForceMap|[UN]->GetType() > 0) { :
Strikes = Fight (Ph_Rat_Bmerch*Err, Pd_Rat_Bmerch,NA,6 Lost);
RedALoss = RedAloss + Lost;

}
RetTime = PresTime + floor (RandNumber->Norm(90,30) + (60*DetDist (UN,AU)/SP_Bf));

RetAircraft->PUSH (RetTime,AU,UN,1,NA-Lost,1.0,1.0);
return Strikes;

}

return 0;

}

// RETURN AIRCRAFT TO SERVICE THAT HAVE LANDED AND RELOADED

vold TerrainType::ReturnAircraft (const int TheClock) {
int UN, WepType, Time, dummyl, NumAssets; :
double Adummy2, dummy3;
int Size = RetAircraft->stackSize();

for (int i = 1; i<= Size; i++) {
RetAircraft->POP (Time, UN, dummyl, WepType, NumAssets, dummy2, dummy3) ;
if (Time > TheClock) {
RetAircraft->PUSH(Time, UN, dummyl, WepType, NumAssets, dummy 2, dummy3) ;
}
else {
if (WepType == 1) {ForceMap|[UN]->UseMS(-NumAssets) ;)
1f (WepType == 2) {ForceMap[UN]->UseB(-NumAssets);)}

}

// PRINT OUT THE STATUS OF ALL UNITS AT A GIVEN TIME

void TerrainType::Status(ostream &method, int TheTime) {
method<<TheTime<<endl;
UnitPrint (method);
}

// OUPUT WEAPONS USED DURING SIMULATION

vold TerrainType::WepsStatus (ostream &method) {
method<<endl<<"Blue*<<endl
<<"CM: "<<BlueCM<<" "<<BlueCMLoss<<endl
<<"A A/C: "<<BlueA<<" "<<BlueAlLoss<<endl
<<"F A/C: "<<BlueF<<" "<<BlueFLoss<<endl

<<"Red"<<endl
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}

<<"SSM: "<<RedSSM<<" “"<<RedSSMLoss<<endl
<<"A A/C: ‘"<<RedA<<" "<<RedAlLoss<<endl
<<"F A/C: "<<RedF<<" "<<RedFLoss<<endl;

// DETERMINE DISTANCE BETWEEN TWO UNITS

double TerrainType::DetDist (const int FirstUnit, const int SecondUnit) ({

)

double xcomp, ycomp;

xcomp = ForceMap|[FirstUnit]->GetxCoord() - ForceMap[SecondUnit]->GetxCoord();
ycomp = ForceMap|[FirstUnit]->GetyCoord() - ForceMap|[SecondUnit]->GetyCoord();
return sgrt(xcomp*xcomp + ycomp*ycomp) ;

double TerrainType::DetDist (const int FirstUnit,const double X,const double Y) {

}

double xcomp, ycomp; i

xXcomp = ForceMap[FirstUnit]->GetxCoord() - X;
ycomp = ForceMap[FirstUnit]->GetyCoord() - Y;
return sqrt(xcomp*xcomp + ycomp*ycomp) ;

// DETERMINE THE GRID THAT A UNIT IS LOCATED ON

int TerrainType::DetermineGrid(const int Unit) ¢

double Xx,y;

int counter = 1;

X = ForceMap([Unit]->GetxCoord();

y = ForceMap[Unit]->GetyCoord();

while (y>TerrainMap[counter]->GetyUp() && y >TerrainMap[counter]->GetyDown())
{counter = counter+5;}

while (x>TerrainMap[counter]->GetxLeft()&&x>TerrainMap[counter]->GetxRight())
{counter++;}

return counter;

// ADJUDICATE A CONFLICT BETWEEN TWC UNITS

int TerrainType::Fight (const double Ph,const double Pd,const int NC, int &Losses)

}

{
int Strike

Losses = 0;
for (int i = 1; i <= NC; i++) {
if (RandNumber->Unif(0,1) > P4d) (
if (RandNumber->Unif(0,1) < Ph) {Strike++;}

0;

}

‘else {Losses++;}

}

return Strike;

// KEEP TRACK OF TOTAL FORCE UNIT LOSSES AFTER A CONFLICT ADJUDICATION
vold TerrainType::UpdateCounter(const int UNtype)

}

if - (UNtype == 1) {ECarrier++;}
else if (UNtype == 2) {EWarship++;}
else 1f (UNtype == 3) {EMerchant++; )}

else 1f (UNtype
else 1if (UNtype
else if (UNtype

21) {EAirbase++; )
22) {ELong_Range_Radar++; }
24) {ESSM++; )

// RECORD THE TYPE AND NUMBER OF EACH TYPE OF UNIT PRIOR TO BATTLE COMMENCEMENT

vold TerrainType::InitCounter(const int UNtype,const int HTK,const int Att,

const int F) {
1f (UNtype == 1) {
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ICarrier++;
IRlueA = IBlueA + Att;
IBlueF = IBlueF + F;

}

else if (UNtype == 2) {IWarship++;}

else 1f (UNtype == 3) {IMerchant++;}

else if (UNtype == 12 || UNtype == 13) {IBlue_Recon = IBlue_Recon + HTK; }
else 1f (UNtype == 21) (

IAirbase++;
IRedA = IRedA + Att;
IRedF = IRedF + F;

}
else 1f (UNtype == 22) {ILong_Range_ Radar++;)

else 1f (UNtype == 24) {ISSM++;}
else 1f (UNtype == 33) ({IRed_Recon = IRed_Recon + HTK;}

}

vold TerrainType::ACdamage (const int Tget, const int Hits, const int MorB) (
int TotAc,ACdown, Att;
double Percent, Effectiveness;

TotAc = ForceMap[Tget]->GetNumMS() + ForceMap[Tget]->GetNumB() ;
Effectiveness = RandNumber->Unif(0,2);

if (Tget < 20) { Percent = (MorB == 1)?USMsl:USB;}
else { Percent = (MoxrB == 1)?IRMsl:IRB;)}

ACdown = floor(double (Hits) *Percent*Effectiveness*double (TotAc));

Att = floor (double (ACdown) *double (ForceMap[Tget]->GetNumMS()) /double (TotAc));
Att = (ForceMap[Tget]->GetNumMS() > Att) ?Att:ForceMap[Tget]->GetNumMS() ;
ForceMap [Tget]->UseMS (Att) ;

Att = ACdown - Att; )
Att = (ForceMap|[Tget]->GetNumB() > Att) ?Att:ForceMap[Tget]->GetNumB() ;

ForceMap |[Tget]->UseB(Att) ;
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// Edward R. Martinez

// September 1996

// MSDOS 6.22

// Borland C++ 4.02 for windows
// THIS IS FILE Grid.h

// This class models a 20 square mile grid of terrain
// The file Grid.cpp holds the code for the class.

#ifndef _ _Grid_h
#define _ _Grid_h
#include <iostream.h>
#include <fstream.h>
#include "Grid.h*
#include "queue.h"
#include "stack.h"
#include "RdANumGen.h"

//DEFINE CLASS GridType

class GridType {
public :

GridType () ;
~GridType () ;
void UpdateMap(const int);
vold SetGridPoints(int, int, int, int, int, int);
vold AddUnit (comst int, comst 1int, const int, const double, const double);
vold RemoveUnit (int);
void GridPrint(ostream&);
voild LookSurf (int,const int,ostream&);
vold LookAir(int,const int, ostream&);
volid LookESM(int ,const int,ostream&);
vold Sensor_Process(const int, const int, const int,const int, comnst double);
int LookAtView(int&, const int, double &, double &, int&);
vold SetWeather(int NewValue) {Weather = NewValue;}
double GetWeather() {return Weather;)
float GetxLeft() (return xLeft;}
float GetxRight() {return xRight;}
vold InitQueue() {BlueView->InitLookPtr(); RedView->InitLookPtr();}
float GetyUp() {return yUp;}
int GetType() {return Type_of_Grid;}
float GetyDown() {return yDown;}
int AnyUnits();

private :
int xLeft, xRight, yUp, yDown;
int Weather, Type_of_Grid;
RdAGen *RandNum;
queueType *Blue, *Red, *BlueView, *RedView;

// STATIC VARIABLES

static double ASurfB, AAirB, AESMB, ASurfR, AAirR, AESMR;
Y:
#endif
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// Edward R. Martinez

// THESIS

// September 1996

// MSDOS 6.2

// Borland C++ 4.02 for windows
// THIS IS FILE Grid.cpp

/7 This class models a Grid on a Terrain Map
// This class is utilized by class TerrainType in the file Terrain.cpp

#include <iostream.h>
#include <fstream.h>
#include "RdANumGen.h"
#include "Grid.h"
#include “"queue.h"

// DEFINE STATIC VARIABLES

double GridType::ASurfB = 0;
double GridType::AAirB = 0;
double GridType::AESMB = 0;
double GridType::ASurfR = 4;
double GridType::AAirR = .5
double GridType::AESMR = 4;

// CONSTRUCTOR

GridType: :GridType () {
Blue = new queueType();
Red = new queueTypel();
BlueView = new queueTypel() ;
RedView new queueType();
RandNum new RdGen();

}

// DESTRUCTOR

GridType: : ~GridType() {
delete Blue;
delete Red;
delete BlueView;
delete RedView;
delete RandNum;

}

// UPDATE INTELLIGENCE PERCEPTION
void GridType: :UpdateMap (const int PresentTime) {

int UN, Qsize;
BlueView->InitLookPtr () ;

if (!BlueView->gueueEmpty()) {
QOsize = BlueView->gueueSize();
for (int i = 0; i < Qsize; i++) {
1f ((PresentTime - BlueView->GetLookTime()) > 15) {

UN = BlueView->LookUnit () ;
BlueView->IncLookPtr();
BlueView->RemoveMember (UN) ;
} .
else {BlueView->IncLookPtr () ;}
}
}
RedView->InitLookPtr () ;
if (!RedView->gueueEmpty()) {
Qsize = RedView->queueSize();
for (int j = 0; j < Qsize; j++) {
1f ((PresentTime - RedView->GetLookTime()) > 15) {
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UN = RedView~->LookUnit();
RedView->IncLookPtr () ;
RedView->RemoveMember (UN) ;
}
else {RedView->IncLookPtr();}

}

// INITIALIZE A GRID

void GridType:
xLeft = xXL;
xRight = XR;
yUp = yYU;
yDown = yD;

Type_of_Grid = t;
Weather = w;

// ADD A UNIT TO A GRID

void GridType::AddUnit (const int Unit_Number, comst int Number,

const int TheTime, const double XNew, const double YNew)

1£ (Unit_Number < 21) {
Blue->AddFront (Unit_Number, Number, TheTime, XNew, YNew);
}
if (Unit_Number > 20) {
Red->AddFront (Unit_Number, Number, TheTime,XNew, YNew) ;
)

'// REMOVE A UNIT FROM A GRID

vold GridType::RemoveUnit (int Unit_Number) ¢
if (Unit_Number < 21) ¢
Blue->RemoveMember (Unit_Number) ;
// BlueView->RemoveMember (Unit_Number) ;
}
if (Unit_Number > 20)
Red->RemoveMember (Unit_Number) ;
// RedView->RemoveMember (Unit_Number) ;
) ,

// PRINT OUT A LISTING OF GRIDS

vold GridType::GridPrint (ostream &method) {

if (Blue->queueSize() > 0 || Red->queueSize() > 0) {
method<<xLeft<<" "<<xRight<<" "<<yUp<<" "<<yDown
<<" "<<Type_of_Grid<<" Num Blue = "<<Blue->queueSize()
<<" Red Saw = "<<RedView->queueSize()
<<" Num Red = "<<Red->queueSize()
<<" Blue Saw = "<<BlueView->queueSize();}
)
int GridType: :AnyUnits () {
1f (Blue->queueSize() > 0 || Red->queueSize() >0) {return 1;}

return 0;

)
// SEARCH USING SURFACE SEARCH RADAR

vold GridType::LookSurf (int Color, comst int DeTime,ostream &meth)
int UnitNumb, Emit;
if (Color == 0}, {
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Red~>InitLookPtr () ;

if (!Red->queueEmpty()) {
for (int i = 0; i < Red->queueSize(); i++) {
UnitNumb = Red->LookAtGrid(Emit);
if (UnitNumb < 30 && RandNum->Unif(0,1) >.3 ) {

Sensor_Process (0, DeTime, UnitNumb, Emit,ASurfB);
meth<<" ["<<UnitNumb<<"] *;

}

Red->IncLookPtr();

}
}

else {
Blue->InitLookPtr () ;
if (!Blue->gueueEmpty()) { ]
for (int i1 = 0; i < Blue->gueueSize(); i++) {
UnitNumb = Blue->LookAtGrid(Emit);
1f (UnitNumb < 10 && RandNum->Unif(0,1) > .3) {
Sensor_Process(l, DeTime, UnitNumb, Emit,ASurfR);
meth<<" ["<<UnitNumb<<"] ";
}
Blue->IncLookPtr();
}
}

}
// SEARCH USING AIR SEARCH RADAR

void GridType::LookAir(int Color, comst int DeTime, ostream & meth) (
int UnitNumb, Emit;

if (Color == 0) {
Red->InitLookPtr();
if (!Red->gueueEmpty()) {
for (int i1 = 0; 1 < Red->queueSize(); i++) {

UnitNumb = Red->LookAtGrid(Emit);

if (UnitNumb > 30 && RandNum->Unif(0,1) >.2) (
Sensor_Process (0, DeTime, UnitNumb, Emit,AAirB);
meth<<" ["<<UnitNumb<<"*] ";

}
- Red->IncLookPtr();

}
}
else {
Blue->InitLookPtr();
if (!Blue->queueEmpty()) {
for (int i = 0; i < Blue->gqueueSize(); i++) {
UnitNumb = Blue->LookAtGrid(Emit);
if (UnitNumb > 10 && UnitNumb != 16 && UnitNumb != 17 &&
UnitNumb !=18 && UnitNumb != 19 && RandNum->Unif(0,1) >.2){
Sensor_Process(l, DeTime, UnitNumb, Emit,AAirR);
meth<<" ["<<UnitNumb<<"] *;
}
Blue->IncLookPtr () ;
}
}

}
// SEARCH USING ELINT RECEIVERS

void GridType: :LookESM(int Color, const int DeTime,ostream &meth)
int UnitNumb, Emit;
if (Color == 0) {
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Red->InitLookPtr () ;
if (!Red->queueEmpty ()) ({

for (int i = 0; i < Red->queueSize(); i++) {
UnitNumb = Red->LookAtGrid(Emit);
if ( Emit == 1 && RandNum->Unif(0,1) > .4) {

Sensor_Process (0, DeTime, UnitNumb, Emit,AESMB);
meth<<" ["<<UnitNumb<<"] *;

}
Red->IncLookPtr();

}
}

else {
Blue->InitLookPtr () ;
if (!Blue->queueEmpty()) {
for (int i = 0; i < Blue->queueSize(); i++) ({
UnitNumb = Blue->LookAtGrid(Emit);
1if (Emit == 1 && UnitNumb != 16 && UnitNumb != 17 &&
UnitNumb != 18 && UnitNumb != 19 && RandNum->Unif(0,1) > .4){
Sensor_Process(1l, DeTime, UnitNumb, Emit,AESMR);
meth<<" ["<<UnitNumb<<"] *;
)
Blue->IncLookPtr();
}
}

3
// SENSOR PROCESS

vold GridType::Sensor_Process(const int CL, comst int DT, const int UN,
const 1int NU, comnst double ACC) {
double X,Y; .

if (CL == 0) {Red->LookUpXY (X,Y) ;)
else ({Blue->LookUpXY(X,Y);}

X = RandNum->Norm(X,ACC) ;
if (X < 0) {X = 0;)

if (X > 700) {X = 700;}
Y = RandNum->Norm(Y,ACC);
if (Y < 0) (Y = 0;}

1f (Y > 400) {Y = 400;)

1f (CL == 0) {
1f (BlueView->FindElement (UN)) {
BlueView->SecondSight (DT, X,Y);
}
else {BlueView->AddFront (UN,NU,DT,X,Y);}
}
else {
if (RedView->FindElement (UN)) ¢
RedView->SecondSight (DT, X,Y);
}
else {RedView->AddFront (UN,NU,DT,X,Y);}

// LOOK AT VIEW

int GridType::LookAtView(int &Un, const int Cl, double &X, double &Y,int &C){
if (Cl == 0) {
if (BlueView->queueEmpty ()) {return 0;)}
1f (BlueView->NoLookAvail()) {return 0;}
Un = BlueView->LookUnit ();
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C = BlueView->LookConf();
BlueView->LookUpXY (X,Y) ;
BlueView->IncLookPtr () ;

return 1;
}
1f (Cl == 1) {
if (RedView->queueEmpty()) {return 0;}
if (RedView->NoLookAvail()) _ {return O;}

Un = RedView->LookUnit();
C = RedView->LookConf () ;
RedView->LookUpXY (X,Y);
RedView->IncLookPtr () ;
return 1;

}

return O;
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// Edward R. Martinez

// September 1996

// THESIS

// MSDOS 6.22

// Borland C++ 4.02 for windows
// THIS IS FILE Unit.h

// This class models a naval or ground combat unit
// The file Unit.cpp holds the code for the class.
// This class is used by terrain.cpp

#ifndef _ Unit_h
#define __Unit_h

#include
#include
#include
#include
#include

<iostream.h>
<fstream.h>
<math.h>
<stdlib.h>
"RANumGen.h"

//DEFINE CLASS UnitType

class UnitType

public

UnitTypel();

vold SetUnit(comst int,const int,const int,const int,const int,comst int,
const int,const int,comnst int,comnst int,comnst int,const int,const int,
const int, const double ,const double ,const double ,const double,

const double ,const double ,const double ,const double ,const double,

const double ,const double ,h const double ,const double ,const double,

const double,const'double,const double ,const double);

int
int
int

MoveSSM(const int,comnst int, comst double);

MoveShip(const int);

MoveAir (const int,const double, const double, const int,const int,
const int);

vold UpdateMotion (const double);
vold PrintUnit (ostream&);

vold PrintLoc(ostream&);

void ChangeSSM();

void NewSSMLoc () ;

double GetxCoord() {return xLocation;}
double GetyCoord() {return yLocation;}
int GetNumber () {return Number;}

double GetCourse() {return Course;}

int GetLP5() {return LP[5];}

int GetLP6() {return LP[6];)}

void SetType (const int wval) {Type = val;)}
int GetType() (return Type;}

int GetGrid() ({return GridLocation;}
~ int GetSRR() {return Surf_Range;}

int GetARR() {return Air_Range;}

int GetESMR() ({return ESM_Range;}

vold SetSRR(comst int range) {Surf_Range = range;}

void SetARR(comnst 1int range) ({Air_Range = range;)}
double GetMR() {return Missile_Range;}
double GetBR() {return Bomb_Range;}

int GetNumMS () {return Missiles;}

int GetNumB() {return Bombs;}

vold UseMS(comst int val) {Missiles = Missiles - val;)}
vold UseB(const int wval) {Bombs = Bombs - wval;}

vold ReloadMS(const int val) ({Missiles = Missiles + val;)}
vold ReloadB(const int wval) {Bombs = Bombs + val;}

vold SpecifyGrid(int GridLoc) {GridLocation = GridLoc;}
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int GetEMCON() {return Emitting;}

vold SetTarget(const int val) {Target = val;}
int GetTarget () {return Target;)

int Dead() {return Hits < Hits_To_Kill?0:1;}
void Attack(const int Num) {Hits = Hits + Num;}

private :

// VARIABLES

int UnitNumber, Number, Type,GridLocation, WP, Motion;

double

Course, Speed, MaxSpeed,MaxRange, xLocation, yLocation;

double XP[7], YP[7];

int LP[7];

int Missiles, Bombs, Surf_Range, Air_ Range, ESM_Range;
double Missile_Range, Bomb_Range;

int Emitting, Target, Hits, Hits_To_Kill, StopTime;
RdGen RandNumb;

// FUNCTIONS

CheckBoundsX(int &, const double);
CheckBoundsY(int &, const double);
CalcCourse(double , double);
Distance();

vold ChartCourse(const int);

double
double
double
double
}i
#endif
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Edward R. Martinez

THESIS

September 1996

MSDOS 6.2

Borland C++ 4.02 for windows
THIS IS FILE Unit.cpp

This class models a unit in a combat scenario

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "Unit.h*
#include "RANumGen.h*

/7

CONSTRUCTOR

UnitType: :UnitType() {

}

UnitNumber = 0;
Number = 1;

Type = -1;
GridLocation = 0;
WP = 1;

MaxSpeed = 0
xLocation
vLocation
XP[0] =
XP[6]

0.0 0.0;XP[3]
= 0.0
YP[O] = 0.0
= 0.0
0;L

=
—
]

0.0;XP[2]

0.0;XP[4]

0.0;XP[5] = 0.0;

L]
o
(@]
~e

1}
I}
il

- 0.0;YP[5]

o]
o
—
=Y
—
0l

0.0;YP[2] 0.0;YP[3] 0.0;YP[4]
YP[6]
LP[O]
Missiles
Bombs = 0;

Surf_Range = 0;

Air_ Range = 0;

ESM_Range = 0;

Missile_Range = 0.0;

Bomb_Range = 0.0; '

Emitting 1; Target = 0; Hits = 0; Hits_To_Kill = 0;
StopTime 1;

il
[=]

é[l] = 0;LP[2] = O;LP[3] = 0;LP[4] = O;LP[5] = 0;LP[6]
0;

void UnitType::SetUnit (const int UU,const int UH,const int UT,conmst int USRR,

const int UARR,const int UESMR,const int UM,const int UB,const int ULP1,
const int ULP2,const int ULP3,const int ULP4,const int ULP5, comst int ULPS6,
const double UMS,const double UMR, const double'UMSR,const double UBR,

const double UXPO, const’ double UYPO,const double UXP1l,const double UYP1,
const double UXP2,const double UYP2,const double UXP3,const double UYP3,
const double UXP4,const double UYP4, const double UXPS5,const, double UYPS5,
const double UXP6, const double UYP6) { .

UnitNumber = UU;
Hits_To_Kill = UH;

Type = UT;

xLocation = UXPO;
yLocation = UYPO;
MaxSpeed = UMS;
MaxRange = UMR;
Missiles = UM;
Missile_Range = UMSR;
Bombs = UB;
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Bomb_Range
Surf_Range

UBR;
USRR;

Air_Range = UARR;
ESM_Range = UESMR;

XP[1] = UXP1;
XP[2] = UXP2;
XP[3] = UXP3;
XP[4] = UXP4;
XP[5] = UXP5;
XP[6] =

UXP6;
} . .

YP{1]
YP[2}]
YP[3]
YP[4]
YP[5]
YP[6]

int UnitType::MoveSSM(const int

UYP1;
UYP2;
UYP3;
UYP4;
UYPpP5;
UYP6;

LI L ¢ R T

LP[1]
LP[2]
LP[3]
LP[4]
LP[5]
LP[6]

TheTime, const

ULP1;
ULP2;
ULP3;
ULP4;
ULPS;
ULP6;

int Flag, const double pmove)

// Determine if a SSM has reached the next waypoint, if it has determine
// 1if it will loiter at this point

1f (WP == 2) {

if (Motion == 1) ({
if (TheTime == StopTime) {
StopTime = TheTime + LP[2];
Missiles = 16;
return 0;
}
else return 1;
}
else {
if (TheTime == StopTime) {

NewSSMLoc () ;

ChartCourse (TheTime) ;

WP = 1;
return 1;

}

return O;

if (Missiles == 0) {
WP = 2;

ChartCourse (TheTime) ;

return 1;

if (WP == 1) A
if (Motion == 1) ({

1f (TheTime == StopTime) {

Motion 0;
Course 0;
Speed = 0;
return O;

nn

3

else {return 1;}

}

if (Flag == 1 && RandNumb.Unif(0,1) < pmove) {

NewSSMLoc () ;
ChartCourse (TheTime)
Emitting = 0;

return 1;

}

’

if (Flag == 1) {Emitting = (RandNumb.Unif(0,1) < 0.5)20:1;}

return 0;

)

// ALL NAVAL VESSEL MOVEMENT
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int UnitType::MoveShip(const int TheTime) {

// SHIP IS NOT MOVING 1) Done Loitering, pull anchor 2) Continue Loitering

if (Motion == 0) ({
if (TheTime == StopTime) {
ChartCourse (TheTime) ;
return 1;

}

else ({return 0;)}

}

// SHIP IS MOVING 1) Reached destination, loiter or new course
// 2) Maintain present course and speed

if (Motion == 1) ({

if (TheTime == StopTime) {
WP++;
if (LP[WP-1] > 0) (
StopTime TheTime + LP[WP-1];

Motion = 0;
return O0;

}

else
ChartCourse (TheTime) ;
return 1;

}

}

else {return 1;}

}

return 1;

}
// RECONAISSANCE AIRCRAFT MOVEMENT

int UnitType::MoveAir(const int TheTime,const double X, const double Y,
const int dirX, comst int dirY, comst int Color) {

if (WP == 1) {
i1f (Motion == 0) {ChartCourse (TheTime) ;Emitting = 1;}
else {
if (TheTime == StopTime) {
WP = 2; ]
ChartCourse (TheTime) ;
}
}

Motion

= 1;
return 1;

if (WP == 2) { ’
if (TheTime == StopTime) {
WP = 3;
XP[3] = X;
YP[3] = Y;
ChartCourse (TheTime) ;
i
Motion

= 1;
return 1;

1f (WP == 3) {
if (TheTime == StopTime) {
WP = 4;
xLocation = X;
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Motion = 0
Emitting = 0;
StopTime = TheTime + LP[4];
return 0;

yLocation = Y;

}

XP[3] = X;

YP[3] = Y;
ChartCourse (TheTime) ;
Motion = 1;

return 1;
}
1f (WP == 4) {
if (TheTime == StopTime) {
WP = 1;
YP[1l] = Y +(dirY*YP[5]);
XP[1] = X + (dirX*XP[51);
YP[2] = YP[1];
1f (Color == 0) {XP[2] = XP[1] + (dAirX*XP[6]):}
else {XP[2] = XP[1l] - (dirX*XP[6]);}
Motion = 0;
}
xLocation = X;
yvLocation = Y;
return 2;
}

return 2;

}

// UPDATE LOCATION OF A UNIT THAT HAS MOVED

vold UnitType::UpdateMotion(const double deltaT) {
int dummy = 0;
xLocation = CheckBoundsX(dummy, cos (Course) *Speed*deltaT + xLocation);
yLocation = CheckBoundsY (dummy, sin(Course) *Speed*deltaT + yLocation);

}
// PRINT OUT INFORMATION DESCRIBING A UNIT

void UnitType::PrintUnit (ostream &method) {
method<<UnitNumber<<" "<<Type<<" HITS/HTK = ("<<Hits<<","
<<Hits_To_Kill<<") ™
<<"# Msl = ‘"<<Missiles<<" "
"Location = ("<<xLocation<<", "<<ylLocation<<")™*
<<"Grid = ["<<GridLocation<<"]"
<<endl;

}

// PRINT OUT COORDINATES TO DATA FILE FOR DISPLAY PURPOSES

void UnitType::PrintLoc(ostream &method)
method<<UnitNumber<<" *<<xLocation<<" "<<yLocation<<endl;

}
// ENSURE SSM STAYS ON LAND

void UnitType::ChangeSSM() ({

int flag = 0;

XP[1] = CheckBoundsX(flag, 10 + xLocation);

if (flag == 1) {
if (XP{1] == 0) {XP[1] = XP[1] + 5;}
else {XP[1l] = XP[1] - 5;}

}

flag = 0;

YP[1] = CheckBoundsY(flag, 10 - yLocation);
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if (flag == 1) {
if (YP[1l] == 0) {YP[1] = YP[1] + 5;}
else {YP[1] = YP[1l] - 5;}

}
// ENSURE A UNIT DOES NOT EXCEED X LIMITS OF GRID MAP

double UnitType::CheckBoundsX(int &flag, const double Location) {
double temp = Location;
if (Location <0) { temp = 0; flag = 1;}
1if (Location > 700) { temp = 700; flag = 1;)
return temp;

3
// ENSURE A UNIT DOES NOT EXCEED Y LIMITS OF GRID MAP

double UnitType::CheckBoundsY(int &flag, comst double Location) {
double temp = Location;
1f (Location <0) { temp = 0; flag = 1;)
1f (Location > 400) { temp = 400; flag = 1;}
return temp;

}
// DETERMINE A COURSE TO REACH A GIVEN POINT

double UnitType::CalcCourse(double X, double Y){
double Xval = (X - xLocation);
if (Xval !'= 0) {
return atan2(Y-yLocation,Xval);
}
else {
return Y > yLocation?1.570796:-1.570796;
}
}

double UnitType::Distance() {
double xcomp, ycomp;
xXcomp xLocation - XP[WP];
ycomp yLocation - YP[WP];
return sqrt((xcomp*xcomp)+ (ycomp*ycomp)) ;

}

// DETERMINE COURSE AND SPEED TO REACH NEXT WAYPOINT AND THE TIME OF ARRIVAL

void UnitType::ChartCourse(const int T) {
Course = CalcCourse (XP[WP],YP[WP]);
Speed = -1;
while (Speed < 0) {
Speed = (Type == 19)?MaxSpeed:RandNumb.Norm(MaxSpeed,1);
}
StopTime T + floor(60*Distance () /Speed);

Motion = 1;

}
/7

vold UnitType::NewSSMLoc() {
int dummy = 0;
XP[1] = CheckBoundsX(dummy, RandNumb.Norm(0,10) + xLocation);
YP[1] CheckBoundsY (dummy, RandNumb .Norm(0,10) + yLocation);
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// Edward R. Martinez

// Thesis

// September 1996

// MSDOS 6,22

// Borland C++ 4.02 for windows
// THIS IS FILE Queue.h

// This file models a Queue. It uses the class QueueElement to model an
// element of the queue. It is utilized by the class GridType in the file

// Grid.cpp

#ifndef _ queue_h
#define __queue_h

#include <iostream.h>
#include <fstream.h>
#include "Queuele.h*

//DEFINE CLASS queueType

class queueType
public :
queueType () {nodeCount = 0; Head = Tail = NULL;)}
~gqueueType () {Resetqueue() ;)
void AddFront(const int, const int, comst int, const double, const double);
vold Display (ostream&);
int gueueEmpty () {return (nodeCount > 0 2 0 : 1);}
int queueSize() (return nodeCount;}
int RemoveMember (const int);
vold Resetqueuel(); ' .
int LookConf() {return LookPtr->GetConfidence();}
int FindElement (const int);
vold SecondSight(const 1int, const double , const double);
void InitLookPtr() {LookPtr = Head;)}
vold LookUpXY (double &,double &) ;
int LookAtGrid(int&);
int LookUnit () {return LookPtr->GetIdentifier();}
int GetLookTime() {return LookPtr->GetDetectTime();}
void IncLookPtr() {LookPtr = LookPtr->GetNext();}
int NoLookAvail() {return LookPtr == NULL?1:0;}
private :
QueueElement *Head, *Tail, *LookPtr;
int nodeCount;

Yi

#endif

118




// Edward R. Martinez

// Thesis

// September 1996

// MSDOS 6.22

// Borland C++ 4.02 for windows
// THIS IS FILE queueType.cpp

#include <iostream.h>
#include <fstream.h>
#include "queue.h"
#include "Queuele.h"

void queueType: :LookUpXY (double &Xp,double &Yp) {

Xp = LookPtr->GetX();
Yp = LookPtr->GetY();
3
void queueType::SecondSight (const int DTime, const double Xn, const double Yn) {

double Xadj, Yadj;

Xadj = (LookPtr->GetX()*LookPtr->GetConfidence() + Xn)/(LookPtr->GetConfidence()+1);
Yadj = (LookPtr->GetY()*LookPtr->GetConfidence() + ¥n)/(LookPtr->GetConfidence()+1);
LookPtr->BoostConfidence (DTime);

LookPtr->SetXY (Xadj,Yadij);

}
int queueType::FindElement (const int Number) {
InitLookPtr () ;
for (int i = 0; i < queueSize(); i++) (
1f (Number == LookPtr->GetIdentifier()) {return 1;}
IncLookPtr();
}
return 0;

}

int queueType: :LookAtGrid(int &Number) ({
int Temp;
Temp = LookPtr->GetElement (Number) ;
return Temp;

}
// Function Resetqueue

volid queueType: :Resetqgueue() {
if (lgqueueEmpty (}) )
QueueElement *NEXTptr, *CurrentPtr = Head;
while (CurrentPtr) {
NEXTptr = CurrentPtr->GetNext();
delete CurrentPtr;
CurrentPtr = NEXTptr;
}
nodeCount = 0;
Head = Tail = NULL;
}
// Function AddFront

void gueueType::AddFront(const int Newnode, const int NewValue, const int Timer,
const double Xn, const double Yn) {
if (queueEmpty())
Head = Tail = mnew QueueElement (Newnode,NewValue, Timer,Xn,¥Yn):

else {QueueElement *temp;
Head->SetPrevious (new QueueElement (Newnode, NewValue, Timer,Xn, ¥Yn) ) ;
temp = Head->GetPrevious();
temp->SetNext (Head) ;
Head = temp;
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}

}

nodeCount++;

// Function Display

vold queueType::Display(ostream& method) ¢{

if (!queueEmpty()) {
QueueElement *CurrentNode = Head;
do {

}

CurrentNode->Display (method) ;
CurrentNode = CurrentNode->GetNext ();

while (CurrentNode):;

// Function RemoveMember

int queueType::RemoveMember (const int ElementToFind) {
if (queueEmpty()) return O;
QueueElement *CurrentNode = Head;

do {

if

}

(ElementToFind == CurrentNode->GetIdentifier()) ¢{.
if (nodeCount == 1) {

delete CurrentNode;

Head = Tail = NULL;

nodeCount = 0;

return 1;}

if (CurrentNode == Head) {
Head = Head->GetNext();
Head->SetPrevious (NULL) ;
delete CurrentNode;
nodeCount--;
return 1;}

if (CurrentNode == Tail) {
Tail = Tail->GetPrevious();
Tail->SetNext (NULL) ;
delete CurrentNode;
nodeCount--;
return 1;}

QueueElement *TempBefore = CurrentNode->GetPrevious();
QueueElement *TempAfter = CurrentNode->GetNext () :;
TempBefore->SetNext (TempAfter) ;

TempAfter->SetPrevious (TempBefore) ;

delete CurrentNode;

nodeCount--;

return 1;

CurrentNode = CurrentNode->GetNext () ;
} while (CurrentNode);
return 0;
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// Edward R. Martinez

// Thesis

// September 1996

// MSDOS 6.2

// Borland C++ 4.02 for windows
// THIS IS FILE QueueElem.cpp

// This file models an element of a Queue. It is utilized by the class
// degueType in the file gqueuetype.cpp

#ifndef _ _QueueEle_h
#define _ QueueEle_h

#include <iostream.h>
#include <fstream.h>

//DEFINE CLASS QueueElement

class QueueElement {
public :
QueueElement (const int Newintl, const int Newint2,const 1int DetTime,

const double Xnew, const double Ynew)

{

intl = Newintl; int2 = Newint2;
int3 = 1; int4 = DetTime;
Reall = Xnew; Real2 = Ynew;
Real3 = 0.0; Reald = 0.0;

NEXT = PREVIOUS = NULL; }

~QueueElement () {NEXT = PREVIOUS = NULL;}

vold Display (ostream& method) {method<<intl<<" ";}

vold SetNext (QueueElement *nextptr) (NEXT = nextptr;}

void SetPrevious(QueueElement *previousptr) {PREVIOUS = previousptr;)}
int GetElement(int &EleValue) {EleValue = int2;returmn intl;}
QueueElement* GetNext () {return NEXT;)

QueueElement* GetPrevious() {return PREVIOUS;}

vold BoostConfidence(const 1int DetTime) {int3++; int4 = DetTimne;}
vold SetXY(const double Xnew, const double Ynew) {Reall = Xnew;Real2=Ynew;}
int GetDetectTime() ({return int4;}

int GetIdentifier() {return intl;}

int GetConfidence() {return int3;}

double GetX() ({return Reall;}

double GetY() ({return Real2;}

private :
QueueElement *NEXT, *PREVIOUS;
int intl, int2, int3, int4;
double Reall,Real2,Real3,Reald;
}i

#endif

121




// Edward R. Martinez

// Thesis

// September 1996

// MSDOS 6.22

// Borland C++ 4.02 for windows
// THIS IS FILE stack.h

// This file models a stack. It uses the class stackElement to model an
// element of the stack. It is utilized by the class GridType in the file

// Grid.cpp

#ifndef __stack_h
#define __stack _h

#include <iostream.h>
#include <fstream.h>
¥include "stackele.h”

//DEFINE CLASS stackType

class stackType (

public :

stackType() {nodeCount = 0; Head = NULL;)
~stackType() {(Resetstack();}

void

vold
int
int
int
vold

private

PUSH(const int, const int, const int, const int, cqnst'int,
const double, const double);

Display (ostream&) ;

stackEmpty () {return (nodeCount > 0 2 0 : 1);}
stackSize() ({return nodeCount;}

POP(int &, inté&, inté&, int&, int&,double &,double &) ;

Resetstack() ;

stackElement *Head, *Tail;

};

#endif

int nodeCoﬁnt;
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// Edward R. Martinez

// Thesis

// September 1996

// MSDOS 6.22

// Borland C++ 4.02 for windows
// THIS IS FILE stackType.cpp

// This class models a stack. It uses the class stackElement. It is
// utilized by the class GridType in file Grid.cpp

#include <iostream.h>
#include <fstream.h>
#include "stack.h®
#include "stackele.h®
// Function Resetstack

vold stackType::Resetstack() {

1f (!stackEmpty()) {
stackElement *NEXTptr, *CurrentPtr = Head;
while (CurrentPtr) {

NEXTptr = CurrentPtr->GetNext();
delete CurrentPtr;
CurrentPtr = NEXTptr;

}

nodeCount = 0;

Head = NULL;

}
// Function PUSH

void stackType::PUSH(const int Newl, const int New2, comst int New3,
const 1nt New4, const int New5,const double Newé6, const double New7) (

1f (stackEmpty())
Head = Tail = new stackElement (Newl,New2,New3, Newd, New5, New6, New7) ;

else {
Tail->SetNext (new stackElement (Newl,New2, New3,New4, New5,New6,New7)) ;
Tail = Tail->GetNext();

}

nodeCount++;
}
// Function Display

vold stackType::Display(ostream& method) (

if (!stackEmpty()) {
stackElement *CurrentNode = Head;
do {

CurrentNode->Display (method) ;
CurrentNode = CurrentNode->GetNext () ;
} while (CurrentNode);
}
// Function POP

int stackType::POP(int &Eleml, int &Elem2, int &Elem3,int &Elem4, int &Elem5,

double &Elemé6, double &Elem7) {
if (stackEmpty()) return O0;
Eleml = Head->GetElementl ();
Elem2 = Head->GetElement2();
Elem3 = Head->GetElement3();
Elem4 = Head->GetElement4();
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Head->GetElement5 (
Head->GetElement6 (
Head->GetElement7 (

Elem5
Elemé6
Elem7

I

1f (nodeCount == 1) {
delete Head;
Head = Tail =
nodeCount = 0;
return 1;}

stackElement *temp;
temp = Head;

Head = Head->GetNext ();
delete temp;
nodeCount--;

return 1;

);
);
) ;
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// Edward R. Martinez

// Thesis

// September 1996

// MSDOS 6.2

// Borland C++ 4.02 for windows
// THIS IS FILE StackEle.cpp

// This file models an element of a Stack. It is utilized by the class
// stackType in the file stack.cpp

#ifndef _ stackEle_h
#define __stackEle_h

#include <iostream.h>
#include <fstream.h>

//DEFINE CLASS stackElement

class stackElement {
public :
stackElement (const int Elel, const int Ele2, comst int Ele3,
const int Ele4, comst int Ele5, const double Ele6, const double Ele7) {
Elementl = Elel;Element2 = Ele2;Element3 = Ele3;Element4 = Ele4;
Element5 = Ele5;Element6 = Ele6;Element7 = Ele7;NEXT = NULL;)

~stackElement () {NEXT = NULL;}
vold Display (ostream& method) ({
method<<Elementl<<" ‘“"<<Element2<<" “<<Element3<<" "<<Element4
<<" "<<Element5<<" "<<Elementé<<" "<<Element7<<endl;}
void SetNext (stackElement *nextptr) {NEXT = nextptr;)}
int GetElementl() {return Elementl;)}
int GetElement2() {return Element2;)
int GetElement3() (return Element3;}
int GetElement4() {return Element4;}
int GetElement5() {return Element5;}
double GetElementé6() {return Elementé;)
double GetElement7() {return Element7;}
stackElement* GetNext () {return NEXT;)

private :
stackElement *NEXT;
int Elementl, Element2, Element3, Element4, Element5;
double Elementé6, Element7;
}i :

#endif
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// Edward R. Martinez

// September 1996

// THESIS

// MSDOS 6.22

// Borland C++ 4.02 for windows
// THIS IS FILE RANumGen.h

// This class was written by Arnie Buss, Naval Postgraduate School, and this
// code is a specific section of his Random Number Generation Class

#ifndef __ RANumGen_h
#define __ RdANumGen_h

#include <math.h>
#include <stdlib.h>
#include <time.h>

const long MODLUS = 21474836471;
const long MULTI1 241121;
const long MULT2 = 261431;

class RdGen {
public :

RdGen () ;
RdGen (const long);
double Uniform();
double Unif (const double, const double);
long UnifI(const 1long a, const long b);
double Normal();
double Norm(const double , comnst double);

private :
long StartingSeed, CurrentSeed;

int BoxFlop;
double BoxSave;

#endif
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// Edward R. Martinez

// September 1996

// THESIS

// MSDOS 6.22

// Borland C++ 4.02 for windows
// THIS IS FILE RANumGen.h

// This class was written by Arnie Buss, Naval Postgraduate School, and this

// code is a specific section of his Random Number Generation Class.

// The one major modification to his code is to allow the random number

// generator seed to be the present computer clock time

#include <math.h>
#include <stdlib.h>
#include <time.h>
#include "RdNumGen.h"

RdGen: :RdGen() {
CurrentSeed = time (NULL) ;
StartingSeed = CurrentSeed;

BoxFlop = 1;
}
RdGen: :RdGen(const 1long initSeed) {
StartingSeed = initSeed;
CurrentSeed = initSeed;

BoxFlop = 1;
}

double RdGen::Uniform() {

long zi, lowprd, hi3l;

zi = CurrentSeed;

lowprd = (2i & 655351) * MULTI1;

hi3l = (zi >> 16) * MULT1 + (lowprd >> 16);

zi = {((lowprd & 655351) - MODLUS) + ((hi31 & 32767) << 16)
if (zi < 0) { =zi += MODLUS;)

lowprd = (zi & 655351) * MULT2;

hi3l = (zi >> 16) * MULT2 + (lowprd >> 16);

Z1 =

if (zi <0) { zi += MODLUS;}

CurrentSeed = zi;

return double (((zi >> 7) | 1) + 1)/16777216.0;

}

double RdGen:: Unif (const double a, const double b)
if ( a <= b) (return a + (b - a) * Uniform();}

else { return (a + b)/2.0;}
}

long RdGen::Unifl(const long a, const long b)

+ (hi3l >> 15);

((lowprd & 655351) - MODLUS) + ((hi31l & 32767) << 16) + (hi31l >> 15);

if ( a <= b) (return a + (long) floor((b - a + 1) * Uniférm());}

else {return O0;)}

}

double RdAGen::Normal() (
double v1, v2, w, y;

if (BoxFlop) {

w = 2.0;

while (w > 1.0 || w < .0001) {
vl = 2.0 * Uniform() - 1.0;
v2 = 2.0 * Uniform() - 1.0;
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w=vl * vl + v2 * v2;
}
y = sqrt( - 2.0* log(w) / w );
BoxSave = v2 * y;
BoxFlop = 0;
return vl * y;
}
else {
BoxFlop = 1;
return BoxSave;

double RdGen::Norm(const double mean, const double std)
1f (std <= 0.0) {return mean;}
else {return mean + std * Normal();}
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APPENDIX F. SIMULATION RUN DATA

trial replication  moe 1 moe 2 moe 3 moe 4 moe 5 moe 6 moe 7
1 1 26 38 . 1 0 387 95 200
2 46 37 1 0 378 101 176
3 34 37 1 0 382 101 180
4 48 37 0.857143 0 382 96 182
5 12 37 1 0 375 96 134
6 25 39 1 0 406 103 142
7 27 39 1 0 364 100 176
8 29 37 0.857143 0 372 92 186
9 43 36 0.714286 0 348 85 198
10 30 37 1 0 376 91 208
2 1 25 36 0.857143 0 375 94 132
2 14 39 0.857143 0 381 98 132
3 47 37 0.714286 0 383 96 194
4 24 39 1 0 386 97 138
5 35 39 0.714286 0 406 102 150
6 43 37 1 0 370 106 180
7 10 37 1 0 406 102 120
8 9 29 1 1 430 113 106
9 27 39 0.857143 0 382 96 162
10 35 36 0.857143 0 412 101 168
3 1 13 39 1 - 0 391 96 164
2 5 38 1 0 360 88 134
3 24 41 1 0 367 92 150
4 47 36 1 0 380 107 188
5 26 37 1 0 398 94 156
6 8 36 1 0 466 99 146
7 2 38 1 0 413 103 120
8 18 36 1 0 382 103 146
9 12 38 1 0 365 95 138
10 32 38 1 0 358 87 150
4 1 0 32 1 1 416 110 114
2 13 36 1 1 375 98 136
3 13 37 1 0 401 104 140
4 1 27 1 2 419 114 84
5 1 36 1 1 404 110 106
6 6. 38 1 0 419 110 118
7 0 32 1 1 379 97 102
8 22 39 1 0 403 110 148
9 4 39 0.857143 0 370 92 190
10 11 39 1 0 406 109 128
5 1 61 36 1 0 608 96 206
2 25 38 1 1 418 96 156
3 44 36 1 0 482 95 216
4 60 38 0.75 0 372 91 208
5 38 37 1 0 456 101 194
6 39 38 1 0 530 103 194
7 45 38 0.875 0 406 94 176
8 25 37 1 0 432 91 166
9 30 36 1 0 406 92 178
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MOE 3 vs. Trial# [10 replications of each trial]
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MOE 5 vs. Triak# [10 replications of each trial]
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